An, Guoqiang team published research on Organic Letters in 2021 | 244205-40-1

244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., Electric Literature of 244205-40-1

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 244205-40-1, formula is C6H6BBrO2, Name is (2-Bromophenyl)boronic acid. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Electric Literature of 244205-40-1.

An, Guoqiang;Wang, Limin;Han, Jianwei research published 《 Palladium Catalyzed Regioselective Cyclization of Arylcarboxylic Acids via Radical Intermediates with Diaryliodonium Salts》, the research content is summarized as follows. Palladium-catalyzed C2-arylation/intramol. acylation with arylcarboxylic acids was developed by using diaryliodonium salts. The protocol has the advantage of good step-economy by two chem. bonds formation in one pot.

244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., Electric Literature of 244205-40-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Andleeb, Hina team published research on Journal of Molecular Structure in 2021 | 585-76-2

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Reference of 585-76-2

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Reference of 585-76-2.

Andleeb, Hina;Danish, Lubna;Munawar, Shiza;Ahmed, Muhammad Naeem;Khan, Imtiaz;Ali, Hafiz Saqib;Tahir, Muhammad Nawaz;Simpson, Jim;Hameed, Shahid research published 《 Theoretical and computational insight into the supramolecular assemblies of Schiff bases involving hydrogen bonding and C-H…π interactions: Synthesis, X-ray characterization, Hirshfeld surface analysis, anticancer activity and molecular docking analysis》, the research content is summarized as follows. The present study examines the significance of various non-covalent interactions in the supramol. assembly of (E)-1-(1-(4-nitrophenyl)ethylidene)-2-phenylhydrazine 1c and (E)-3-bromo-N’-(1-phenylethylidene)benzohydrazide 2d. The synthesized compounds were fully characterized by spectroscopic methods and single crystal X-ray diffraction anal. The topol. of the supramol. assemblies was controlled by various non-covalent interactions including classical hydrogen bonding, C-H…π and Br… Br interactions which were examined in detail using several theor. methods and DFT calculations The optimized geometric parameters of compounds 1c and 2d were calculated using d. functional theory (DFT/B3LYP) quantum chem. method with the 6-311++G(d,p) basis set using the crystallog. coordinates. Addnl., fragments contributing to the HOMO and LUMO MOs were investigated at the same level of theory. The nature and various types of intermol. interactions in the crystal structures was also investigated by Hirshfeld surface anal. The synthesized Schiff bases were also studied for their potential as drugs and physicochem. properties. Bioevaluation against four cancer cell lines (NCI-H460, NCI-H460/Bcl-2, MDA-MB-231 and MCF-7) showed that compound 1c was a more potent inducer of toxicity compared to 2d. The putative binding modes of the bioactive Schiff bases were investigated using mol. docking tools and the results revealed that both the inhibitors were stabilized in the active pocket of the enzyme via the formation of various interactions with the key amino acid residues.

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Reference of 585-76-2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Andrews, Mary Katherine team published research on Journal of the American Chemical Society in 2022 | 20469-65-2

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., COA of Formula: C8H9BrO2

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene, COA of Formula: C8H9BrO2

Andrews, Mary Katherine;Liu, Xinyu;Gellman, Samuel H. research published 《 Tailoring Reaction Selectivity by Modulating a Catalytic Diad on a Foldamer Scaffold》, the research content is summarized as follows. Use of a tunable mol. scaffold to align a reactive diad for bifunctional catalysis can reveal relationships between functional group identity and reactivity that might otherwise be impossible to identify. Here we use an α/β-peptide helix to show that an aligned pair of primary amine groups is uniquely competent to catalyze crossed aldol condensations with an aryl aldehyde as the electrophile. Geometrically similar diads in which one amine group is secondary, or both are secondary, are good catalysts for other types of aldol condensations but not those involving an aryl aldehyde. Catalytic efficacy requires β-amino acid residues that are preorganized for helix formation via cyclic constraint. Conventional peptides (exclusively α-amino acid residues) that display the primary amine diad are poor catalysts, which highlights the critical role of the foldamer scaffold.

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., COA of Formula: C8H9BrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Akitake, Masahiro team published research on Journal of Organic Chemistry in 2021 | 244205-40-1

Formula: C6H6BBrO2, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

Organic compounds having carbon bonded to bromine are called organic bromides. 244205-40-1, formula is C6H6BBrO2, Name is (2-Bromophenyl)boronic acid. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Formula: C6H6BBrO2.

Akitake, Masahiro;Noda, Shizuki;Miyoshi, Kohei;Sonoda, Motohiro;Tanimori, Shinji research published 《 Access to γ-Carbolines: Synthesis of Isocryptolepine》, the research content is summarized as follows. A new method to synthesize γ-carboline derivatives has been developed starting from 3,5-dibromo-4-pyridinamine by monoarylation using the Suzuki-Miyaura cross-coupling reaction followed by the base-mediated ring closure to pyrrole formation. Synthesis of a series of γ-carboline derivations from the 4-brominated γ-carboline 4a has been achieved by employing various coupling reactions and N-alkylations. This method has been applied for the synthesis of the antimalarial and anticancer natural product isocryptolepine. The photophys. properties of novel γ-carboline derivations are also reported.

Formula: C6H6BBrO2, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Cui, Hengxian team published research on European Journal of Medicinal Chemistry in 2022 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Electric Literature of 402-49-3

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 402-49-3, formula is C8H6BrF3, The most pervasive is the naturally produced bromomethane. Electric Literature of 402-49-3

Yin, Wenbo;Cui, Hengxian;Jiang, Hong;Zhang, Yuxin;Liu, Lei;Wu, Tianxiao;Sun, Yin;Zhao, Liyu;Su, Xin;Zhao, Dongmei;Cheng, Maosheng research published 《 Broadening antifungal spectrum and improving metabolic stablity based on a scaffold strategy: Design, synthesis, and evaluation of novel 4-phenyl-4,5-dihydrooxazole derivatives as potent fungistatic and fungicidal reagents》, the research content is summarized as follows. 5-Phenylthiophene derivatives exhibited excellent antifungal activity against Candida albicans, Candida tropicalis and Cryptococcus neoformans. However, optimal compound II was inactive against Aspergillus fumigatus and unstable in human liver microsomes in vitro with a half-life of 18.6 min. To discover antifungal agents with a broad spectrum and improve the metabolic properties of the compounds, the scaffold hopping strategy was adopted and a series of I [R2 = 3-Me, 2-Et, 2-iso-Pr, etc.,] were designed and synthesized. It was especially encouraging that compound I [R = 2-F] displayed significant antifungal activities against eight susceptible strains and seven FLC-resistant strains. Furthermore, the potent compound I [R = 2-F] could prevent the formation of fungalbiofilms and displayed satisfactory fungicidal activity. In addition, the metabolic stability of compound I [R = 2-F] was improved significantly, with the half-life of 70.5 min. Compound I [R = 2-F] was almost nontoxic to mammalian A549, MCF-7, HepG2, and 293T cells. Moreover, pharmacokinetic studies in SD rats showed that compound I [R = 2-F] exhibited pharmacokinetic properties with a bioavailability of 15.22% and a half-life of 4.44 h, indicating that compound I [R = 2-F] is worthy of further study.

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Electric Literature of 402-49-3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Qiao, Shujia team published research on Organic Letters in 2021 | 5392-10-9

5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., Category: bromides-buliding-blocks

Organic compounds having carbon bonded to bromine are called organic bromides. 5392-10-9, formula is C9H9BrO3, Name is 2-Bromo-4,5-dimethoxybenzaldehyde. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Category: bromides-buliding-blocks.

Zhou, Liwei;Qiao, Shujia;Zhou, Fengru;Xuchen, Xinyu;Deng, Guobo;Yang, Yuan;Liang, Yun research published 《 α-Oxocarboxylic Acids as Three-Carbon Insertion Units for Palladium-Catalyzed Decarboxylative Cascade Synthesis of Diverse Fused Heteropolycycles》, the research content is summarized as follows. A novel palladium-catalyzed decarboxylative cascade cyclization for the assembly of diverse fused heteropolycycles by employing α-oxocarboxylic acids as three-carbon insertion units is reported. This protocol enables the synthesis of isoquinolinedione- and indolo[2,1-a]isoquinolinone-fused benzocycloheptanones in moderate to good yields by the use of different aryl iodides, including alkene-tethered 2-iodobenzamides and 2-(2-iodophenyl)-1H-indoles. Notably, the approach achieves simultaneous construction of both six- and seven-membered rings via sequential intramol. carbopalladation, C-H activation, and decarboxylation.

5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., Category: bromides-buliding-blocks

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary