Liao, Xueping et al. published their research in Journal of Materials Chemistry A: Materials for Energy and Sustainability in 2018 | CAS: 53784-83-1

Heptakis(6-Bromo-6-Deoxy)-閻?Cyclodextrin (cas: 53784-83-1) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. Bromine-containing agents predominate because not only are they more efficient than similar chlorine-containing species, but also the high atomic weight of bromine ensures that it is present in a high mass fraction within most organobromine compounds.Safety of Heptakis(6-Bromo-6-Deoxy)-閻?Cyclodextrin

Synthesis of glycopolymer nanosponges with enhanced adsorption performances for boron removal and water treatment was written by Liao, Xueping;Wang, Bingyu;Zhang, Qiang. And the article was included in Journal of Materials Chemistry A: Materials for Energy and Sustainability in 2018.Safety of Heptakis(6-Bromo-6-Deoxy)-閻?Cyclodextrin This article mentions the following:

The high-affinity interactions between cis-diols and boric/boronic acid have been widely used as a tool for carbohydrate anal., protein separation and B removal. Here, we report the design and synthesis of cyclodextrin-scaffolded glycopolymers as bifunctional nanosponges for B removal and water treatment for the 1st time. Different glycopolymer nanosponges (GNs) were synthesized from monosaccharides and 閻?cyclodextrin via a combination of a crosslinking reaction, Fischer glycosylation and a click reaction. Such functional GNs are mesoporous polymer frameworks with cis-diol-containing saccharides immobilized on the surface, which have exhibited selective adsorption behavior towards boric acid depending on the structure of the GNs and the loaded saccharides. The GNs showed remarkable adsorption rates and capacities for an organic dye as a model pollutant in this work. Secondary bonding, such as H bonding and van der Waals forces between the immobilized saccharides and the adsorbates is believed to be responsible for the significantly enhanced adsorption rates and capacities. Such bifunctional materials may exhibit potential applications in seawater desalination and water treatment. In the experiment, the researchers used many compounds, for example, Heptakis(6-Bromo-6-Deoxy)-閻?Cyclodextrin (cas: 53784-83-1Safety of Heptakis(6-Bromo-6-Deoxy)-閻?Cyclodextrin).

Heptakis(6-Bromo-6-Deoxy)-閻?Cyclodextrin (cas: 53784-83-1) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. Bromine-containing agents predominate because not only are they more efficient than similar chlorine-containing species, but also the high atomic weight of bromine ensures that it is present in a high mass fraction within most organobromine compounds.Safety of Heptakis(6-Bromo-6-Deoxy)-閻?Cyclodextrin

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Bost, Mireille et al. published their research in Journal of Inclusion Phenomena and Molecular Recognition in Chemistry in 1997 | CAS: 53784-83-1

Heptakis(6-Bromo-6-Deoxy)-閻?Cyclodextrin (cas: 53784-83-1) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. Many of the alkyl bromine derivatives are excellent alkylating agents since bromides are good leaving groups. Tribromides, like tetrabutylammonium tribromide, are used as a solid source of bromine. N-bromosuccimide (NBS) is used for the selective bromination of allylic bonds.Safety of Heptakis(6-Bromo-6-Deoxy)-閻?Cyclodextrin

The hemolytic properties of chemically modified cyclodextrins was written by Bost, Mireille;Laine, Valerie;Pilard, Florence;Gadelle, Andree;Defaye, Jacques;Perly, Bruno. And the article was included in Journal of Inclusion Phenomena and Molecular Recognition in Chemistry in 1997.Safety of Heptakis(6-Bromo-6-Deoxy)-閻?Cyclodextrin This article mentions the following:

The hemolytic properties of natural cyclodextrins, especially of the more common cyclomaltoheptaose entity, severely hamper their potential use as carriers in pharmaceutical applications where parenteral administration is concerned. A systematic investigation on the role of chem. modifications with regard to the hemolytic character was carried out involving C-6 branched neutral, anionic, cationic and amphoteric derivatives From these data, conclusions have been drawn about the charge and the geometry of the modification: (1) substitution at primary hydroxyl groups usually decreases the hemolytic character and the geometry of the substituent affects the hemolytic property; (2) introduction of an amino group, resulting in a pos. charge at physiol. pH, decreases the hemolytic character; (3) neg. charges are comparatively less effective in reducing the hemolytic character; (4) zwitterionic groups seem to enhance the hemolytic character of the cyclodextrin mol. In the experiment, the researchers used many compounds, for example, Heptakis(6-Bromo-6-Deoxy)-閻?Cyclodextrin (cas: 53784-83-1Safety of Heptakis(6-Bromo-6-Deoxy)-閻?Cyclodextrin).

Heptakis(6-Bromo-6-Deoxy)-閻?Cyclodextrin (cas: 53784-83-1) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. Many of the alkyl bromine derivatives are excellent alkylating agents since bromides are good leaving groups. Tribromides, like tetrabutylammonium tribromide, are used as a solid source of bromine. N-bromosuccimide (NBS) is used for the selective bromination of allylic bonds.Safety of Heptakis(6-Bromo-6-Deoxy)-閻?Cyclodextrin

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Fu, Qiang et al. published their research in ACS Energy Letters in 2022 | CAS: 128-08-5

1-Bromopyrrolidine-2,5-dione (cas: 128-08-5) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. Bromine-containing agents predominate because not only are they more efficient than similar chlorine-containing species, but also the high atomic weight of bromine ensures that it is present in a high mass fraction within most organobromine compounds.Recommanded Product: 128-08-5

Multifunctional Two-Dimensional Polymers for Perovskite Solar Cells with Efficiency Exceeding 24% was written by Fu, Qiang;Liu, Hang;Tang, Xingchen;Wang, Rui;Chen, Mingqian;Liu, Yongsheng. And the article was included in ACS Energy Letters in 2022.Recommanded Product: 128-08-5 This article mentions the following:

The passivation of the intrinsic surface defects of perovskites by organic functional materials has a great potential to retard charge recombination and enhance charge extraction However, unsatisfactory device performance and a lack of in-depth understanding of the defect passivation mechanism make rational mol. design for efficient solar cells a great challenge. Herein, two solution-processable two-dimensional (2D) conjugated polymers, namely, 2DP-F and 2DP-O, have been synthesized for perovskite solar cells (PSCs). It is found that these materials could passivate surface defects, transport and extract hole carriers, hamper moisture invasion, and impede diffusion of Li+ cations into the perovskite film. As a result, champion efficiencies of 23.31% and 24.08% were achieved for 2DP-F- and 2DP-O-based devices, resp., coupled with dramatically improved stability. These results indicate that our proposed 2D polymers could be promising multifunctional materials for further boosting the efficiency and improving the stability of PSCs. In the experiment, the researchers used many compounds, for example, 1-Bromopyrrolidine-2,5-dione (cas: 128-08-5Recommanded Product: 128-08-5).

1-Bromopyrrolidine-2,5-dione (cas: 128-08-5) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. Bromine-containing agents predominate because not only are they more efficient than similar chlorine-containing species, but also the high atomic weight of bromine ensures that it is present in a high mass fraction within most organobromine compounds.Recommanded Product: 128-08-5

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Yao, Bo et al. published their research in Advanced Synthesis & Catalysis in 2012 | CAS: 85118-24-7

2-Bromo-4-(trifluoromethyl)benzaldehyde (cas: 85118-24-7) belongs to organobromine compounds. Most of the natural organobromine compounds are produced by marine organisms, and several brominated metabolites with antibacterial, antitumor, antiviral, and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.Name: 2-Bromo-4-(trifluoromethyl)benzaldehyde

Palladium-Catalyzed C-H Oxidation of Isoquinoline N-Oxides: Selective Alkylation with Dialkyl Sulfoxides and Halogenation with Dihalo sulfoxides was written by Yao, Bo;Song, Ren-Jie;Liu, Yan;Xie, Ye-Xiang;Li, Jin-Heng;Wang, Meng-Ke;Tang, Ri-Yuan;Zhang, Xing-Guo;Deng, Chen-Liang. And the article was included in Advanced Synthesis & Catalysis in 2012.Name: 2-Bromo-4-(trifluoromethyl)benzaldehyde This article mentions the following:

A novel palladium-catalyzed C-H oxidation of isoquinoline N-oxides has been developed for regioselectively synthesizing substituted isoquinolines, e.g., I (R1 = F, Cl, MeO, CF3; R2 = Me, n-Bu) and II (R3 = H, CF3). The method represents the first example of using dialkyl sulfoxides as the alkyl sources for the construction of 1-alkylated isoquinolines. Moreover, the regioselective halogenation of isoquinoline N-oxides is also successful using dihalo sulfoxides as the halide sources. In the experiment, the researchers used many compounds, for example, 2-Bromo-4-(trifluoromethyl)benzaldehyde (cas: 85118-24-7Name: 2-Bromo-4-(trifluoromethyl)benzaldehyde).

2-Bromo-4-(trifluoromethyl)benzaldehyde (cas: 85118-24-7) belongs to organobromine compounds. Most of the natural organobromine compounds are produced by marine organisms, and several brominated metabolites with antibacterial, antitumor, antiviral, and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.Name: 2-Bromo-4-(trifluoromethyl)benzaldehyde

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Romanelli, Gustavo P. et al. published their research in E-Journal of Chemistry in 2008 | CAS: 35065-86-2

3-Bromophenyl acetate (cas: 35065-86-2) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.Application In Synthesis of 3-Bromophenyl acetate

A simple and mild acylation of alcohols, phenols, amines, and thiols with a reusable heteropoly acid catalyst (H6P2W18O62閻?4 H2O) was written by Romanelli, Gustavo P.;Bennardi, Daniel O.;Autino, Juan C.;Baronetti, Graciela T.;Thomas, Horacio J.. And the article was included in E-Journal of Chemistry in 2008.Application In Synthesis of 3-Bromophenyl acetate This article mentions the following:

The acylation of alcs., phenols, thiols, and amines with varied substitution using acid anhydrides is efficiently catalyzed by Wells-Dawson heteropoly acid (H6P2W18O62閻?4 H2O). Reactions proceed with very good to excellent yield in air at room temperature, using toluene as solvent (40 examples). The bulk catalyst was easily reused without appreciable loss of its activity. In the experiment, the researchers used many compounds, for example, 3-Bromophenyl acetate (cas: 35065-86-2Application In Synthesis of 3-Bromophenyl acetate).

3-Bromophenyl acetate (cas: 35065-86-2) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.Application In Synthesis of 3-Bromophenyl acetate

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kaieda, Akira et al. published their research in ChemMedChem in 2019 | CAS: 29421-99-6

4-Bromo-5-methylthiophene-2-carboxylic acid (cas: 29421-99-6) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.Product Details of 29421-99-6

Structure-Based Design, Synthesis, and Biological Evaluation of Imidazo[4,5-b]Pyridin-2-one-Based p38 MAP Kinase Inhibitors: Part 2 was written by Kaieda, Akira;Takahashi, Masashi;Fukuda, Hiromi;Okamoto, Rei;Morimoto, Shinji;Gotoh, Masayuki;Miyazaki, Takahiro;Hori, Yuri;Unno, Satoko;Kawamoto, Tomohiro;Tanaka, Toshimasa;Itono, Sachiko;Takagi, Terufumi;Sugimoto, Hiroshi;Okada, Kengo;Lane, Weston;Sang, Bi-Ching;Saikatendu, Kumar;Matsunaga, Shinichiro;Miwatashi, Seiji. And the article was included in ChemMedChem in 2019.Product Details of 29421-99-6 This article mentions the following:

We identified novel potent inhibitors of p38 mitogen-activated protein (MAP) kinase using a structure-based design strategy, beginning with lead compound, 3-(butan-2-yl)-6-(2,4-difluoroanilino)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (1). To enhance the inhibitory activity of 1 against production of tumor necrosis factor-濞?(TNF-濞? in human whole blood (hWB) cell assays, we designed and synthesized hybrid compounds in which the imidazo[4,5-b]pyridin-2-one core was successfully linked with the p-methylbenzamide fragment. Among the compounds evaluated, 3-(3-tert-butyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-6-yl)-4-methyl-N-(1-methyl-1H-pyrazol-3-yl)benzamide (25) exhibited potent p38 inhibition, superior suppression of TNF-濞?production in hWB cells, and also significant in vivo efficacy in a rat model of collagen-induced arthritis (CIA). In this paper, we report the discovery of potent, selective, and orally bioavailable imidazo[4,5-b]pyridin-2-one-based p38 MAP kinase inhibitors. In the experiment, the researchers used many compounds, for example, 4-Bromo-5-methylthiophene-2-carboxylic acid (cas: 29421-99-6Product Details of 29421-99-6).

4-Bromo-5-methylthiophene-2-carboxylic acid (cas: 29421-99-6) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.Product Details of 29421-99-6

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Golestanzadeh, Mohsen et al. published their research in ChemistrySelect in 2019 | CAS: 96761-85-2

3,3”-Dibromo-5′-(3-bromophenyl)-1,1′:3′,1”-terphenyl (cas: 96761-85-2) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Formula: C24H15Br3

Effect of Confined Spaces in the Catalytic Activity of 1D and 2D Heterogeneous Carbon-Based Catalysts for Synthesis of 1,3,5-Triarylbenzenes: RGO-SO3H vs. MWCNTs-SO3H was written by Golestanzadeh, Mohsen;Naeimi, Hossein. And the article was included in ChemistrySelect in 2019.Formula: C24H15Br3 This article mentions the following:

One hot debate between catalytic activities of sulfonated reduced graphene oxide (RGO-SO3H), as the 2D heterogeneous carbon-based catalyst, and sulfonated multi-walled carbon nanotubes (MWCNTs-SO3H), as the 1D heterogeneous carbon-based catalyst, was investigated in the synthesis of 1,3,5-triarylbenzenes under different conditions. This comparison study revealed that the 2D catalytic system was more efficient relative to the 1D catalyst in terms of yields of the target products, turnover frequency of the catalyst (TOF), and the reusability. The reasons of this observation such as sp. surface area, confinement spaces in 1D and 2D carbon-based catalysts, solvent accessible surface area, surface active sites, and the availability of supported functional groups on carbon nanostructures will discuss. Moreover, the application of synthesized compounds as a substrate was checked in carbon-carbon bond formation. Also, one of the synthesized compounds was produced using three approaches under metal and non-metal conditions. Notably, the recyclability of the two catalytic systems was checked. In the experiment, the researchers used many compounds, for example, 3,3”-Dibromo-5′-(3-bromophenyl)-1,1′:3′,1”-terphenyl (cas: 96761-85-2Formula: C24H15Br3).

3,3”-Dibromo-5′-(3-bromophenyl)-1,1′:3′,1”-terphenyl (cas: 96761-85-2) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Formula: C24H15Br3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Dyson, George M. et al. published their research in Journal of the Chemical Society in 1929 | CAS: 615-55-4

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. Many of the alkyl bromine derivatives are excellent alkylating agents since bromides are good leaving groups. Tribromides, like tetrabutylammonium tribromide, are used as a solid source of bromine. N-bromosuccimide (NBS) is used for the selective bromination of allylic bonds.Safety of 3,4-Dibromoaniline

Aminobenzothiazoles. XI. Synthesis of 5,4′-disubstituted 1-anilinobenzothiazoles from nuclear substituted thiocarbenilides was written by Dyson, George M.;Hunter, Robert F.;Soyka, Charles. And the article was included in Journal of the Chemical Society in 1929.Safety of 3,4-Dibromoaniline This article mentions the following:

(P-BrC6H4NH)2CS and Br in CHCl3 yield a perbromide, which, on heating, gives a hydropentabromide(I), C13H8N2Br2S.HBr.Br4, orange-red needles, m. 170闁?(decomposition) and rapidly loses Br on exposure to moist air suspended in H2SO3 and treated with SO2, there results 5,4′-dibromo-1-anilinobenzothiazole(II), m. 221闁? Ac derivative, m. 205-6闁? HBr salt, m. 250闁?(decomposition); Br gives I. 1-Chloro-5-bromobenzothiazole, m. 89闁? b13 157-9闁? results by heating p-BrC6H4NCS and PCl5 30-40 hrs. at 170-80闁?warming with p-BrC6H4NH2 gives II. p-BrC6H4NHCSNHPh and Br in CHCl3 give the hydrotribromide, m. 148闁?(decomposition), which is reduced to 4′-bromo-1-anilinobenzothiazole (III), m. 214-5闁? also obtained from 1-chlorobenzothiazole and p-BrC6H4NH2. Bromination of III gives II. 1-Anilinobenzothiazole yields a hexabromide, m. 140闁? which yields II on being dissolved in boiling absolute EtOH. Hugershoff’s dibromoanilinobenzothiazole (Ber. 36, 3121(1903)) appears to consist mainly of II, although the m. p. could not be raised above 200闁? Bromination of II gives an unstable orange hexabromide, m. 254闁? which gives with hot absolute EtOH a tetra-Br substitution derivative, m. 196-8闁? (p-ClC6H4NH)2CS and Br in CHCl3 yield a hydrotribromide, orange, m. 165-7闁?(decompm); reduction gives 5,4′-dichloro-1-aminobenzothiazole, m. 224闁? Ac derivative, m. 186-7闁? HBr salt. yellow, m. 217闁? hexabromide, orange, m. 263闁?(decomposition). p-ClC6H4NHCSNHPh yields a Br addition compound, orange, m. 130闁?(decomposition); 4′-chloro-1-anilinobenzothiazole, m. 196闁? this is also obtained from 1-chlorobenzothiazole and p-ClC6H4NH2. (p-IC6H4NH)2CS and Br in CHCl3 yield a red bromide, m. 185闁? and a yellow, m. 211闁? both, on reduction, yield 5,4′-diiodo-1-anilinobenzothiazole, m. 193闁?(decomposition); this also results by treating 1-anilinobenzothiazole in AcOH with ICl, warming the solution and diluting with H2O. (p-FC6H4NH)2CS gives a hydrotribromide, orange, m. 150-2闁?(decomposition); 5,4′-difluoro-1-anilinobenzothiazole, m. 227-8闁? 5,4′-Dinitro-1-anilinobenzothiazole, brilliant yellow, in. 280闁? this also results on nitration of 1-anilinobenzothiazole. (p-NCC6H4NH)2CS and Br give an addition product, golden, m. 159-60闁?(decomposition): 5,4′-dicyano-1-anilinobenzothiazole, m. 222闁? (p-EtO2CC6H4NH)2CS yields a hydropentabromide, orange, m. 110闁?(decompn); reduction gives Et 1-anilinobenzothiazole-5,4′-dicarboxylate, m. 190-2闁? hydrolysis gives the free acid, does not m. 290闁? (p-MeOC6H4NH)2CS yields a brick-red bromide, m. 137闁?(decomposition), reduced to a dibromo-5,4′-dimethoxy-1-anilinobenzothiazole, m. 240闁? PhNHCSNAcPh yields a hydrotribromide, orange, m. 167闁?(decomposition); the same compound is obtained from 1-acetanilinobenzothiazole, HBr and Br (Hugershoff, Ber. 36, 3136(1903)); Br in CHCl3 gives an orange hexa-Br addition compound, m. 163闁?(decomposition). In the experiment, the researchers used many compounds, for example, 3,4-Dibromoaniline (cas: 615-55-4Safety of 3,4-Dibromoaniline).

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. Many of the alkyl bromine derivatives are excellent alkylating agents since bromides are good leaving groups. Tribromides, like tetrabutylammonium tribromide, are used as a solid source of bromine. N-bromosuccimide (NBS) is used for the selective bromination of allylic bonds.Safety of 3,4-Dibromoaniline

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Bose, Shubhankar Kumar et al. published their research in ACS Catalysis in 2016 | CAS: 57293-19-3

1-(3-Bromopropyl)-4-methoxybenzene (cas: 57293-19-3) belongs to organobromine compounds. Organo bromine compounds are versatile compounds and are widely used in diverse fields. Organo bromine derivatives are used in the dye sector, as an indicator in analytical chemistry (Bromothymol blue is a popular indicator). The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.Synthetic Route of C10H13BrO

Highly efficient synthesis of alkylboronate esters via Cu(II)-catalyzed borylation of unactivated alkyl bromides and chlorides in air was written by Bose, Shubhankar Kumar;Brand, Simon;Omoregie, Helen Oluwatola;Haehnel, Martin;Maier, Jonathan;Bringmann, Gerhard;Marder, Todd B.. And the article was included in ACS Catalysis in 2016.Synthetic Route of C10H13BrO This article mentions the following:

A copper(II)-catalyzed borylation of alkyl halides with bis(pinacolato)diboron (B2pin2) has been developed, which can be carried out in air, providing a wide range of primary, secondary, and some tertiary alkylboronates in high yields. A variety of functional groups are tolerated and the protocol is also applicable to unactivated alkyl chlorides (including 1,1- and 1,2-dichlorides). Preliminary mechanistic investigations show that this borylation reaction involves one-electron processes. In the experiment, the researchers used many compounds, for example, 1-(3-Bromopropyl)-4-methoxybenzene (cas: 57293-19-3Synthetic Route of C10H13BrO).

1-(3-Bromopropyl)-4-methoxybenzene (cas: 57293-19-3) belongs to organobromine compounds. Organo bromine compounds are versatile compounds and are widely used in diverse fields. Organo bromine derivatives are used in the dye sector, as an indicator in analytical chemistry (Bromothymol blue is a popular indicator). The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.Synthetic Route of C10H13BrO

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Varney, Michael D. et al. published their research in Journal of Medicinal Chemistry in 1997 | CAS: 38239-45-1

5-Bromo-3-methylthiophene-2-carboxylic acid (cas: 38239-45-1) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Product Details of 38239-45-1

Protein Structure-Based Design, Synthesis, and Biological Evaluation of 5-Thia-2,6-diamino-4(3H)-oxopyrimidines: Potent Inhibitors of Glycinamide Ribonucleotide Transformylase with Potent Cell Growth Inhibition was written by Varney, Michael D.;Palmer, Cindy L.;Romines, William H. III;Boritzki, Theodore;Margosiak, Stephen A.;Almassy, Robert;Janson, Cheryl A.;Bartlett, Charlotte;Howland, Eleanor J.;Ferre, Rosanne. And the article was included in Journal of Medicinal Chemistry in 1997.Product Details of 38239-45-1 This article mentions the following:

The design, synthesis, biochem., and biol. evaluation of a novel series of 5-thia-2,6-diamino-4(3H)-oxopyrimidine inhibitors of glycinamide ribonucleotide transformylase (GART) are described. The compounds were designed using the X-ray crystal structure of human GART. The monocyclic 5-thiapyrimidinones were synthesized by coupling an alkyl thiol with 5-bromo-2,6-diamino-4(3H)-pyrimidinone. The bicyclic compounds were prepared in both racemic and diastereomerically pure forms using two distinct synthetic routes. The compounds were found to have human GART Kis ranging from 30 婵炴挾鎷?to 2 nM. The compounds inhibited the growth of both L1210 and CCRF-CEM cells in culture with potencies down to the low nanomolar range and were found to be selective for the de novo purine biosynthesis pathway. The most potent inhibitors had 2,5-disubstituted thiophene rings attached to the glutamate moiety. Placement of a Me substituent at the 4-position of the thiophene ring resulted in inhibitors with significantly decreased mFBP (human folate-binding protein) affinity. In the experiment, the researchers used many compounds, for example, 5-Bromo-3-methylthiophene-2-carboxylic acid (cas: 38239-45-1Product Details of 38239-45-1).

5-Bromo-3-methylthiophene-2-carboxylic acid (cas: 38239-45-1) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Product Details of 38239-45-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary