If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.
Adding a certain compound to certain chemical reactions, such as: 955959-84-9, name is 4-(4-Bromophenyl)dibenzo[b,d]furan, belongs to bromides-buliding-blocks compound, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 955959-84-9, Formula: C18H11BrO
In this example, a method for synthesizing N-(l, r-biphenyl-4-yl)-N-[4-(dibenzofuran-4-yl)phenyl]-9,9-dimethyl-9H-fluoren-2-ami ne (abbreviation: FrBBiF-II) represented by Structural Formula (100) will be described. [0238] [0239] First, 2.1 g (6.6 mmol) of 4-(4-bromophenyl)dibenzofuran, 2.4 g (6.7 mmol) of N-(l,l ‘-biphenyl-4-yl)-9,9-dimethyl-9H-fluoren-2-amine, and 1.9 g (20 mmol) of sodium tert-butoxide were put in a 200-mL three-neck flask and the air in the flask was replaced with nitrogen. To this mixture, 33 mL of toluene, 0.30 mL of a 10 % hexane solution of tri(ter/-butyl)phosphine, and 48 mg (0.1 mmol) of bis(dibenzylideneacetone)palladium(0) were added, and stirring was performed at 90 C for 7.5 hours. After the stirring, suction filtration through Florisil (produced by Wako Pure Chemical Industries, Ltd., Catalog No. 540-00135), Celite (produced by Wako Pure Chemical Industries, Ltd., Catalog No. 531 – 16855), and alumina was carried out to give a filtrate. The filtrate was concentrated to give a solid. The solid was purified by silica gel column chromatography (the developing solvent was hexane and toluene in a ratio of 3:1) to give a solid. The solid was recrystallized from toluene and hexane, so that 3.2 g of an objective solid was obtained in a yield of 81 %. A reaction scheme of this reaction is shown below. [0240] [0241] Using a train sublimation method, 1.0 g of the obtained solid was purified by sublimation. In the purification by sublimation, the pressure was 2.6 Pa, the flow rate of argon gas was 5.0 mL/min, and the temperature of the heating was 289 C. After the purification by sublimation, 0.99 g of a solid which was the object of the synthesis was obtained at a collection rate of 95 %. [0242] Results of measurement of the obtained solid by nuclear magnetic resonance ( NMR) are shown below. NMR (CDCI3, 500 MHz): delta = 1.46 (s, 6H), 7.18 (dd, J = 8.5 Hz, 2.5 Hz, 1 H), 7.26-7.48 (m, 14H), 7.53-7.56 (m, 2H), 7.60-7.68 (m, 6H), 7.86-7.91 (m, 3H), 7.99 (d, J = 7.5 Hz, 1 H). [0243] Thermogravimetry-differential thermal analysis (TG-DTA) of the obtained FrBBiF-II was performed. The measurement was conducted by using a high vacuum differential type differential thermal balance (TG/DTA 2410SA, manufactured by Bruker AXS Kappa.Kappa.)· The measurement was carried out under a nitrogen stream (a flow rate of 200 mL/min) and a normal pressure at a temperature rising rate of 10 C/min. The relationship between weight and temperature (thermogravimetry) shows that the 5 % weight loss temperature is 393 C, which is indicative of high heat resistance. [0244] FIGS. 13A and 13B are NMR charts. Note that FIG. 13B shows an enlarged part of FIG. 13A in the range of 7.00 ppm to 8.25 ppm. The measurement results confirmed that N-(l, -biphenyl-4-yl)-N-[4-(dibenzofuran-4-yl)phenyl]-9,9-dimethyl-9H-fluoren-2-ami ne (abbreviation: FrBBiF-II), which was the target substance, was obtained. [0245] Physical Properties of FrBBiF-Il FIG. 14A shows an absorption spectrum and an emission spectrum of FrBBiF-II in a toluene solution of FrBBiF-II, and FIG. 14B shows an absorption spectrum and an emission spectrum of a thin film of FrBBiF-II. The spectra were measured with a UV-visible spectrophotometer (V550, produced by JASCO Corporation). The spectra of FrBBiF-II in the toluene solution of FrBBiF-II were measured with a toluene solution of FrBBiF-II put in a quartz cell. The spectra of the thin film were measured with a sample prepared by deposition of FrBBiF-II on a quartz substrate by evaporation. Note that in the case of the absorption spectrum of FrBBiF-II in the toluene solution of FrBBiF-II, the absorption spectrum obtained by subtraction of the absorption spectra of the quartz cell and toluene from the measured spectra is shown in the drawing and that in the case of the absorption spectrum of the thin film of FrBBiF-II, the absorption spectrum obtained by subtraction of the absorption spectrum of the quartz substrate from the measured spectra is shown in the drawing. [0246] As shown in FIG. 14A, in the case of FrBBiF-II in the toluene solution, an absorption peak was observed at approximately 360 nm, and an emission wavelength peak was observed at approximately 415 nm (excitation wavelength: 366 nm). As shown in FIG. 14B, in the case of the thin film of FrBBiF-II, absorption peaks were observed at approximately 368 nm, 294 nm, 266 nm, 247 nm, and 209 nm, and an emission wavelength peak was observed at approximately 428 nm (excitation wavelength: 376 nm). Thus, it was found that absorption and light emission of FrBBiF-II occur in extremely short wavelength regions. [0247] The ionization potential of FrBBiF-II in a thin film state was measured by photoelectron spectroscopy (the measuring instrument: AC-2, manufactured by Riken Keiki, Co., Ltd.) in the air. The obtained value of the ionization potential was converted into a negative value, so that the HOMO level of FrBBiF-II was determined to be -5.61 eV. From the da…
If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.
Reference:
Patent; SEMICONDUCTOR ENERGY LABORATORY CO., LTD.; OGITA, Kaori; SEO, Satoshi; SEO, Hiromi; TAKAHASHI, Tatsuyoshi; WO2014/157018; (2014); A1;,
Bromide – Wikipedia,
bromide – Wiktionary