Ryzhkov, Fedor V. team published research in Journal of Heterocyclic Chemistry in 2021 | 90-59-5

90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., Application of C7H4Br2O2

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Application of C7H4Br2O2.

Ryzhkov, Fedor V.;Elinson, Michail N.;Ryzhkova, Yuliya E.;Vereshchagin, Anatoly N.;Korolev, Victor A.;Egorov, Mikhail P. research published 《 Pseudo-four-component synthesis and in silico studies of 5-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-substituted 5H-chromeno[2,3-b]pyridines》, the research content is summarized as follows. A new pseudo-four-component synthetic approach to 5-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-substituted 5H-chromeno[2,3-b]pyridines I [R1 = H, OEt, Br, I; R2 = H, OH; R3 = H, Br, I, NO2; R4 = H, Ph; R5 = H; R3R5 = CH=CH-CH=CH] with 68%-95% yields was reported. This multicomponent reaction opened an efficient and convenient way to substituted 5H-chromeno[2,3-b]pyridines I, which were promising compounds in medicinal chem. and for the treatment of lung cancer through inhibition of aldo-keto reductase 1B10. A new consensus approach of mol. docking and mol. dynamics was applied for the investigation of interaction of synthesized 5H-chromeno[2,3-b]pyridines I and aldo-keto reductase 1B10.

90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., Application of C7H4Br2O2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Ren, Nan team published research in Journal of Organic Chemistry in 2021 | 90-59-5

Recommanded Product: 3,5-Dibromo-2-hydroxybenzaldehyde, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 90-59-5, formula is C7H4Br2O2, The most pervasive is the naturally produced bromomethane. Recommanded Product: 3,5-Dibromo-2-hydroxybenzaldehyde

Ren, Nan;Zhang, Lingfeng;Hu, Yijie;Wang, Xiaoli;Deng, Zhen;Chen, Jie;Deng, Hongmei;Zhang, Hui;Tang, Xiao-Jun;Cao, Weiguo research published 《 Perfluoroalkyl-Promoted Synthesis of Perfluoroalkylated Pyrrolidine-Fused Coumarins with Methyl β-Perfluoroalkylpropionates》, the research content is summarized as follows. Employing the Me β-perfluoroalkylpropionate as the Michael acceptor, an efficient approach for the synthesis of perfluoroalkylated pyrrolidine-fused coumarins has been achieved. A tandem reaction involving [3 + 2] cycloaddition and intramol. transesterification was proposed for the mechanism. The enhanced electrophilicity resulting from the strong electron-withdrawing ability of the perfluoroalkyl group was crucial for this tandem reaction.

Recommanded Product: 3,5-Dibromo-2-hydroxybenzaldehyde, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Rajnak, Cyril team published research in Dalton Transactions in 2021 | 90-59-5

Product Details of C7H4Br2O2, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Organic compounds having carbon bonded to bromine are called organic bromides. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Product Details of C7H4Br2O2.

Rajnak, Cyril;Micova, Romana;Moncol, Jan;Dlhan, Lubor;Kruger, Christoph;Renz, Franz;Boca, Roman research published 《 Spin-crossover in an iron(III) complex showing a broad thermal hysteresis》, the research content is summarized as follows. A pentadentate Schiff-base ligand 3,5Cl-L2- and NCSe form an iron(III) mononuclear complex [Fe(3,5Cl-L)(NCSe)], which shows a thermally induced spin crossover with a broad hysteresis width of 24 K between 123 K (warming) and 99 K (cooling). Analogous complexes of the [Fe(3,5X-L)(Y)] type, where X = Cl or Br and Y = Cl, N3, NCS, and NCSe, are high-spin over the whole temperature interval.

Product Details of C7H4Br2O2, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Rambabu, Aveli team published research in Journal of Molecular Structure in 2021 | 90-59-5

90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., Category: bromides-buliding-blocks

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Category: bromides-buliding-blocks.

Rambabu, Aveli;Daravath, Sreenu;Shankar, Dasari Shiva;Shivaraj research published 《 DNA-binding, -cleavage and antimicrobial investigation on mononuclear Cu(II) Schiff base complexes originated from Riluzole》, the research content is summarized as follows. Two mononuclear metal complexes, [Cu(L1)2] (1) and [Cu(L2)2] (2) of the resp. Schiff bases, HL1 = 2-((E)-(6-(trifluoromethoxy)benzo[d]thiazol-2-ylimino)methyl)-4-methoxyphenol and HL2 = 2-((E)-(6-(trifluoromethoxy)benzo[d]thiazol-2-ylimino)methyl)-4,6-dibromophenol were synthesized and well characterized by anal. and various spectroscopic techniques like elemental anal., NMR, mass spectrometry, IR, UV, ESR and thermogravimetric analyses. These spectral studies gave a square planar geometry for both the complexes. These complexes underwent DNA investigation against calf thymus DNA and supercoiled pBR322 DNA. The complexes bound the DNA through an intercalation mode and the binding affinity order follows as 1 > 2 > HL2 > HL1. Both complexes show good cleavage ability against double-stranded pBR322 DNA under oxidative and photolytic conditions. In vitro antimicrobial study resulted in both complexes have shown marked biocidal potential compared to resp. free ligands.

90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., Category: bromides-buliding-blocks

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Pinchaipat, Bussaba team published research in Materials Letters in 2021 | 90-59-5

Category: bromides-buliding-blocks, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Category: bromides-buliding-blocks.

Pinchaipat, Bussaba;Khudkham, Teerawat;Wongsuwan, Sutthida;Chotima, Ratanon;Chainok, Kittipong;Pila, Taweesak research published 《 The novel zinc(II) complex with dibromo substituted Schiff base and its biological activity》, the research content is summarized as follows. Schiff base 3,5-dibromo-N-(8-quinolyl)salicylaldimine (HqsalBr2) and its zinc(II) complex, [Zn(qsalBr2)2], have been synthesized and characterized using spectroscopic techniques and single crystal X-Ray crystallog. The interaction of the complex with calf thymus DNA (CT-DNA) was investigated by electronic absorption and luminescence titration methods. The results reveal the intercalative mode of binding between the synthesized complex and CT-DNA with binding constant (Kb) of 2.00 x 106 M-1. The complex also exhibits capability in the competitive reaction with the standard ethidium bromide (EB) and provides favorable quenching constant value (Kq) of 7.91 x 1011 M-1s-1. Anti-lung cancer activity against A549 cell line was examined and zinc(II) complex performed the ability in the inhibition of this cancer cell growing.

Category: bromides-buliding-blocks, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Paul, Subrata team published research in Journal of Molecular Structure in 2022 | 90-59-5

Formula: C7H4Br2O2, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Formula: C7H4Br2O2.

Paul, Subrata;Alam, Ashraful Md.;Pal, Tarun Kumar;Uddin, Najem Md.;Islam, Monirul Md.;Sheikh, Chanmiya Md. research published 《 Quantum computational, spectroscopic investigation, molecular docking, and in vitro pharmacological studies of sulfonamide Schiff base》, the research content is summarized as follows. A new Schiff base, (E)-4-((3,5-dibromo-2-hydroxybenzylidene)amino)-N-(5-methylisoxazol-3-yl)benzenesulfonamide was synthesized and characterized by various physico-chem., X-ray crystallog. and DFT methods. The exptl. findings were compared with the computed data. The characteristic azomethine band was found at 1616 cm-1 in the exptl. FTIR spectrum. Single X-ray crystallog. data indicated that the crystal system of the compound was monoclinic with space group P21/c. The exptl. values were well correlated with the computed ones. The kinetic stability of the compound was high due to the larger HOMO-LUMO energy gap. Mol. docking and POM (Petra/Osiris/Molinspiration) investigation of the compound were also performed. POM anal. identified one antibacterial and two antitumor pharmacophore sites in the compound It exhibited higher binding energy than the reference drug in mol. docking study. The compound followed Lipinski’s rule of five and exhibited promising drug-like character and drug score. Moreover, in vitro anticancer, antibacterial, antifungal, anti-inflammatory and antioxidant properties of the compound were also carried out. It showed good antibacterial effects against S. aureus and S. typhi strains. In case of antifungal activity, the compound showed moderate inhibitory activity against both A. niger and A. flavus strains. Besides, it had the capability to stabilize the human red blood cell membrane in hypotonic solution and protect hemolysis. The highest cytotoxic activity of the compound with was observed against A549 lung cancer cells. Finally, the compound showed moderate antioxidant activity.

Formula: C7H4Br2O2, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Payne, Jack M. team published research in ChemSusChem in 2022 | 90-59-5

Safety of 3,5-Dibromo-2-hydroxybenzaldehyde, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Organic compounds having carbon bonded to bromine are called organic bromides. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Safety of 3,5-Dibromo-2-hydroxybenzaldehyde.

Payne, Jack M.;Kamran, Muhammad;Davidson, Matthew G.;Jones, Matthew D. research published 《 Versatile Chemical Recycling Strategies: Value-Added Chemicals from Polyester and Polycarbonate Waste》, the research content is summarized as follows. ZnII-complexes bearing half-salan ligands were exploited in the mild and selective chem. upcycling of various com. polyesters and polycarbonates. Remarkably, we report the first example of discrete metal-mediated poly(bisphenol A carbonate) (BPA-PC) methanolysis being appreciably active at room temperature Indeed, Zn(2)2 and Zn(2)Et achieved complete BPA-PC consumption within 12-18 mins in 2-Me-THF, noting high bisphenol A (BPA) yields (SBPA=85-91%) within 2-4 h. Further kinetic anal. found such catalysts to possess kapp values of 0.28±0.040 and 0.47±0.049 min-1 resp. at 4 wt%, the highest reported to date. A completely circular upcycling approach to plastic waste was demonstrated through the production of several renewable poly(ester-amide)s (PEAs), based on a terephthalamide monomer derived from bottle-grade poly(ethylene terephthalate) (PET), which exhibited excellent thermal properties.

Safety of 3,5-Dibromo-2-hydroxybenzaldehyde, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Payne, Jack team published research in Polymer Chemistry in 2021 | 90-59-5

COA of Formula: C7H4Br2O2, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Organobromine compounds have fallen under increased scrutiny for their environmental impact., COA of Formula: C7H4Br2O2.

Payne, Jack;McKeown, Paul;Driscoll, Oliver;Kociok-Kohn, Gabriele;Emanuelsson, Emma A. C.;Jones, Matthew D. research published 《 Make or break: Mg(II)- and Zn(II)-catalen complexes for PLA production and recycling of commodity polyesters》, the research content is summarized as follows. Recently we reported a series of highly active Al(III)-complexes bearing a catalen ligand support for lactide polymerization, observing unprecedented activity in the melt. Herein we report diversification of the metal to furnish a series of well-defined dimeric Zn(II)- and Mg(II)-complexes, which were fully characterized by X-ray crystallog. and NMR spectroscopy. The production of biocompatible atactic PLA from rac-LA in solution and under industrially preferred solvent-free conditions was demonstrated, typically observing good activity and Mn control with a broad range of dispersities (D = 1.08-2.04). Mg(II)-Complexes were shown to facilitate the relatively mild methanolysis of PLA, achieving up to 64% conversion to Me-LA within 8 h at 80°C in THF. Further kinetic anal. found [Mg(1,3)]2 to have kapp values of 0.628 ± 0.0536 {4 weight% cat. loading} and 0.265 ± 0.0193 h-1 {8 weight% cat. loading} resp. for the rate of consumption of PLA. Preliminary work extended polymer scope to PET from various sources, demonstrating catalyst versatility.

COA of Formula: C7H4Br2O2, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Pariat, Thibault team published research in Journal of Organic Chemistry in 2021 | 90-59-5

90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., Recommanded Product: 3,5-Dibromo-2-hydroxybenzaldehyde

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Recommanded Product: 3,5-Dibromo-2-hydroxybenzaldehyde.

Pariat, Thibault;Stoerkler, Timothee;Diguet, Clement;Laurent, Adele D.;Jacquemin, Denis;Ulrich, Gilles;Massue, Julien research published 《 Dual Solution-/Solid-State Emissive Excited-State Intramolecular Proton Transfer (ESIPT) Dyes: A Combined Experimental and Theoretical Approach》, the research content is summarized as follows. Excited-state intramol. proton transfer (ESIPT) dyes typically show strong solid-state emission, but faint fluorescence intensity is observed in the solution state owing to detrimental mol. motions. This article investigates the influence of direct (hetero)arylation on the optical properties of 2-(2′-hydroxyphenyl)benzoxazole ESIPT emitters. The synthesis of two series of ESIPT emitters bearing substituted neutral or charged aryl, thiophene, or pyridine rings is reported herein along with full photophys. studies in solution and solid states, demonstrating the dual solution-/solid-state emission behavior. Depending on the nature of substitution, several excited-state dynamics are observed: quant. or partially frustrated ESIPT process or deprotonation of the excited species. Protonation studies revealed that pyridine substitution triggered a strong increase of quantum yield in the solution state for the protonated species owing to favorable quinoidal stabilization. These attractive features led to the development of a second series of dyes with alkyl or aryl pyridinium moieties showing strong tunable solution/solid fluorescence intensity. For each series, ab initio calculations helped rationalize and ascertain their behavior in the excited state and the nature of the emission observed by the exptl. results.

90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., Recommanded Product: 3,5-Dibromo-2-hydroxybenzaldehyde

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Nahari, Gilad team published research in Dalton Transactions in 2021 | 90-59-5

90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., Category: bromides-buliding-blocks

Organic compounds having carbon bonded to bromine are called organic bromides. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Category: bromides-buliding-blocks.

Nahari, Gilad;Tshuva, Edit Y. research published 《 Synthesis of asymmetrical diaminobis(alkoxo)-bisphenol compounds and their C1-symmetrical mono-ligated titanium(IV) complexes as highly stable highly active antitumor compounds》, the research content is summarized as follows. Asym. 2,2′-((ethane-1,2-diylbis((2-hydroxyethyl)azanediyl))bis(methylene))diphenol substituted compounds and their C1-sym. diaminobis(phenolato)-bis(alkoxo) titanium(IV) complexes were synthesized, with one sym. analog. X-ray crystallog. corroborated tight ligand binding. Different substitutions on the two aromatic rings enabled fine-tuning of the complex properties, giving enhanced solubility, high anticancer activity (IC50 < 4μM), and significant hydrolytic stability.

90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., Category: bromides-buliding-blocks

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary