One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde, Application In Synthesis of 90-59-5
Zianna, Ariadni;Geromichalou, Elena;Geromichalos, George;Fiotaki, Augusta-Maria;Hatzidimitriou, Antonios G.;Kalogiannis, Stavros;Psomas, George research published 《 Zinc(II) complexes of 3,5-dibromo-salicylaldehyde and α-diimines: Synthesis, characterization and in vitro and in silico biological profile》, the research content is summarized as follows. The synthesis of five neutral zinc(II) complexes of 3,5-dibromo-salicyladehyde (3,5-diBr-saloH) in the presence of nitrogen-donor co-ligands 2,2′-bipyridine (bipy), 1,10-phenanthroline (phen), 2,9-dimethyl-1,10-phenanthroline (neoc), or 2,2′-bipyridylamine (bipyam) was undertaken and complexes [Zn(3,5-diBr-salo)2(H2O)2] (1), [Zn(3,5-diBr-salo)2(bipy)] (2), [Zn(3,5-diBr-salo)2(phen)].3,5-diBr-saloH (3), [Zn(3,5-diBr-salo)2(neoc)] (4) and [Zn(3,5-diBr-salo)2(bipyam)] (5) were characterized by various techniques. The crystal structures of complexes 3 and 5 were determined by x-ray crystallog., revealing the coexistence of two different coordination modes of 3,5-diBr-salo– ligands. The new complexes show selective in vitro antibacterial activity against two Gram-pos. and two Gram-neg. bacterial strains. The complexes may scavenge 1,1-diphenyl-picrylhydrazyl and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radicals and reduce H2O2. The complexes may intercalate in-between the calf-thymus DNA-bases and have exhibited low-to-moderate ability to cleave supercoiled circular pBR322 plasmid DNA. The complexes may bind tightly and reversibly to bovine and human serum albumins. In order to explain the in vitro activity of the compounds, mol. docking studies were adopted on the crystal structure of calf-thymus DNA, human and bovine serum albumin, Escherichia coli and Staphylococcus aureus DNA-gyrase, 5-lipoxygenase, and 5-lipoxygenase activating protein. The employed in silico studies aimed to explore the ability of the compounds to bind to these target biomacromols., establishing a possible mechanism of action and were in accordance with the in vitro studies.
90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.
3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.
3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).
3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., Application In Synthesis of 90-59-5
Referemce:
Bromide – Wikipedia,
bromide – Wiktionary