Kong, Haiyan team published research in Bioorganic & Medicinal Chemistry Letters in 2021 | 823-78-9

COA of Formula: C7H6Br2, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. COA of Formula: C7H6Br2.

Kong, Haiyan;Meng, Xianshe;Hou, Rui;Yang, Xiaoxiao;Han, Jihong;Xie, Zhouling;Duan, Yajun;Liao, Chenzhong research published 《 Novel 1-(prop-2-yn-1-ylamino)-2,3-dihydro-1H-indene-4-thiol derivatives as potent selective human monoamine oxidase B inhibitors: Design, SAR development, and biological evaluation》, the research content is summarized as follows. Successes have been achieved in developing human monoamine oxidase B (hMAO-B) inhibitors as anti-Parkinson’s disease (PD) drugs. However, low efficiency and unwanted side effects of the marketed hMAO-B inhibitors hamper their medical applications, therefore, novel potent selective hMAO-B inhibitors are still of great interest. Herein we report 1-(prop-2-yn-1-ylamino)-2,3-dihydro-1H-indene-4-thiol derivatives as hMAO-B inhibitors, which were designed by employing a fragment-based drug design strategy to link rasagiline to hydrophobic fragments. Among the synthesized 31 compounds, I and II demonstrated very encouraging hMAO-B inhibitory activities and selectivity over hMAO-A, better than rasagiline and safinamide. In vitro studies indicated that K8 and K24 are nontoxic to nervous tissue cells and they have considerable effects against ROS formation and potential neuroprotective activity. Further mice behavioral tests demonstrated these two compounds have good therapeutic effects on MPTP-induced PD model mice. All these experiment results suggest that compounds K8 and K24 can be promising candidates for further research for treatment of PD.

COA of Formula: C7H6Br2, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kondo, Masaru team published research in ACS Catalysis in 2021 | 823-78-9

Application In Synthesis of 823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Application In Synthesis of 823-78-9.

Kondo, Masaru;Nakamura, Kento;Krishnan, Chandu G.;Takizawa, Shinobu;Abe, Tsukasa;Sasai, Hiroaki research published 《 Photoswitchable chiral phase transfer catalyst》, the research content is summarized as follows. Azo-crown ether-based photoswitching chiral phase transfer catalysts have been developed to control the catalytic activity by photoirradiation Azobenzene binaphthyl crown ether (ABCE) can switch its reactivity and selectivity through structural transformation of the crown ether moiety induced by E/Z photoisomerization of azobenzene. (Z)-ABCE promoted enantioselective alkylation of the glycine Schiff base to afford chiral amino acid derivatives in good yields with high enantiomer ratios. In contrast, (E)-ABCE hindered the reaction progress under the same conditions.

Application In Synthesis of 823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kang, Dongwei team published research in European Journal of Medicinal Chemistry in 2021 | 823-78-9

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Computed Properties of 823-78-9

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Computed Properties of 823-78-9.

Kang, Dongwei;Urhan, Cagil;Wei, Fenju;Frutos-Beltran, Estrella;Sun, Lin;Alvarez, Mar;Feng, Da;Tao, Yucen;Pannecouque, Christophe;De Clercq, Erik;Menendez-Arias, Luis;Liu, Xinyong;Zhan, Peng research published 《 Discovery, optimization, and target identification of coumarin derivatives as HIV-1 reverse transcriptase-associated ribonuclease H inhibitors》, the research content is summarized as follows. Despite significant advances in antiretroviral therapy, acquired immunodeficiency syndrome remains as one of the leading causes of death worldwide. New antiretroviral drugs combined with updated treatment strategies are needed to improve convenience, tolerability, safety, and antiviral efficacy of available therapies. In this work, a focused library of coumarin derivatives was exploited by cell phenotypic screening to discover novel inhibitors of HIV-1 replication. Compounds I, II, III, IV and V showed moderate activity against wild-type and drug-resistant strains of HIV-1 (IIIB and RES056). Four of those mols. were identified as inhibitors of the viral RT-associated RNase H. Structural modification of the most potent III and IV led to the discovery of compound 8a. This mol. showed increased potency against wild-type HIV-1 strain (EC50 = 3.94 ± 0.22 μM) and retained activity against a panel of mutant strains, showing EC50 values ranging from 5.62 μM to 202 μM. In enzymic assays, 8a was found to inhibit the viral RNase H with an IC50 of 12.3 μM. Mol. docking studies revealed that Me 5-(7,8-dihydroxy-6-nitro-2-oxo-2H-chromene-3carboxamido)-2-hydroxybenzoate could adopt a binding mode similar to that previously reported for other active site HIV-1 RNase H inhibitors.

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Computed Properties of 823-78-9

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Jin, Yu-Ting team published research in Journal of Asian Natural Products Research in | 823-78-9

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Synthetic Route of 823-78-9

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Synthetic Route of 823-78-9.

Jin, Yu-Ting;Qi, Yan-Qiu;Jin, Mei;Sun, Jin-Feng;Diao, Sheng-Bao;Zhou, Wei;Zhao, Long-Xuan;Li, Gao research published 《 Synthesis, antitumor and antibacterial activities of cordycepin derivatives》, the research content is summarized as follows. Twelve novel cordycepin derivatives were designed and synthesized with modification at positions of 2′, 5′-hydroxyl and N6 amino groups of cordycepin. The results showed that the inhibitory activities of , , and on A549 were comparable to the pos. control gefitinib, and the inhibitory activity of on A549 was better than that of gefitinib. Also, the inhibitory activities of twelve cordycepin derivatives against E. coli 1924, S. aureus 4220 and S. mutans 3289 were studied. Among them, showed certain inhibitory on S. mutans 3289, while showed certain inhibition on S. aureus 4220.

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Synthetic Route of 823-78-9

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Ji, Hong team published research in Bioorganic & Medicinal Chemistry in 2021 | 823-78-9

Application of C7H6Br2, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 823-78-9, formula is C7H6Br2, The most pervasive is the naturally produced bromomethane. Application of C7H6Br2

Ji, Hong;Tan, Yaling;Gan, Nana;Zhang, Jing;Li, Shannuo;Zheng, Xuan;Wang, Zhaohua;Yi, Wei research published �Synthesis and anticancer activity of new coumarin-3-carboxylic acid derivatives as potential lactate transport inhibitors� the research content is summarized as follows. Pharmacol. inhibition of lactate transport has been viewed as a promising therapeutic strategy to target a range of human cancers. In this study, a series of new coumarin-3-carboxylic acid derivatives I (R1 = OEt, OPr, OBn, etc.; R2 = iPr, Ph, OH, NH2, etc.) and II (R1 = NEt2; R3 = thiophen-2-yl, pyridin-3-yl) were synthesized and evaluated as lactate transport inhibitors. Their cytotoxic activity has been tested against three cell lines high-expressing and low-expressing monocarboxylate transporter 1 (MCT1) which acts as the main carrier for lactate. Few compounds showed significant cytotoxicity and good selectivity against Hela and HCT116 cell lines with high MCT1 expression. Notably, coumarin-3-hydrazide I (R1 = NEt2; R2 = NH2), the lead mol. with the most potent cytotoxic activity, exhibited significant anti-proliferation and apoptosis induction effects. Further studies revealed that I (R1 = NEt2; R2 = NH2) decreased the expression level of target MCT1, and suppressed the energetic metabolism of Hela and HCT116 cells by remarkably reducing glucose consumption and lactate production Addnl., I (R1 = NEt2; R2 = NH2) induced intracellular lactate accumulation and inhibited lactate uptake, which implied that it blocked lactate transport via MCT1. These results indicate a good start point for the development of lactate transport inhibitors as new anticancer agents.

Application of C7H6Br2, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Jeon, Hongjun team published research in Organic Letters in 2021 | 823-78-9

Formula: C7H6Br2, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene, Formula: C7H6Br2

Jeon, Hongjun;Choi, Sang Won;Park, Soojun;Lee, Seokwoo;Kim, Sanghee research published ã€?Synthesis of Bridged Oxabicycles via Cascade Reactions involving O-Acyloxocarbenium Ion Intermediatesã€? the research content is summarized as follows. Compared to related electrophilic species, O-acyloxocarbenium ions (AOIs) have been much less utilized in organic synthesis due to the lack of an efficient formation method. Here, the authors present a facile and simple approach for the generation of AOI from ester and acetal groups. Based on the authors’ AOI system with a pendant nucleophile, a unique bridged bicyclic system was obtained via an epoxonium-like transition state. The proposed mechanism is based on exptl. and computational studies.

Formula: C7H6Br2, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Huang, Hongtai team published research in Organic Chemistry Frontiers in 2021 | 823-78-9

Computed Properties of 823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Computed Properties of 823-78-9.

Huang, Hongtai;Chen, Junyu;Jiang, Yubo;Xiao, Tiebo research published ã€?One pot synthesis of isocyano-containing, densely functionalised gem-difluoroalkenes from α-trifluoromethyl alkenes, alkyl halides and TosMICã€? the research content is summarized as follows. A base-promoted one-pot, three-component reaction of TosMIC with α-trifluoromethyl alkenes and alkyl halides for the synthesis of isocyano- containing, densely functionalized gem-difluoroalkenes were reported. This protocol displayed broad scope and excellent functional group compatibility. The products were used as precursors to various medicinally relevant fluorine- or heterocycle-containing compouds.

Computed Properties of 823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Huang, Wentao team published research in European Journal of Medicinal Chemistry in 2022 | 823-78-9

SDS of cas: 823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Organic compounds having carbon bonded to bromine are called organic bromides. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. SDS of cas: 823-78-9.

Huang, Wentao;Wang, Yingjie;Xu, Si;Qiao, Hui;Cheng, Haoran;Wang, Linxu;Liu, Shuqi;Tian, Qingjian;Wang, Ruodong;Wang, Hongbo;Bi, Yi research published �Design, synthesis, and tumor drug resistance reversal activity of novel hederagenin derivatives modified by nitrogen-containing heterocycles� the research content is summarized as follows. The emergence of multidrug resistance (MDR) in tumors leads to reduced chemotherapeutic efficacy, and P-glycoprotein (P-gp) overexpression is one of the main causes of MDR. In previous reports, we demonstrated that a variety of hederagenin (HD) derivatives could reverse MDR in tumors in vivo and in vitro. To further enrich the structure types, enhance the activity, and improve the structure-activity relationships (SARs), three series of HD derivatives were designed and synthesized in this study via A-ring fusion and innovative utilization of the structural advantages of nitrogen-containing heterocycles and benzyl group substitution. We evaluated the MDR reversal activity of 21 HD derivatives in KBV (multidrug-resistant oral epidermoid carcinoma) cells and refined their SARs. The results of cell experiments illustrated that more than half of the compounds had MDR reversal activity. Among them, compound 16 displayed relatively stronger MDR reversal ability, as it improved the sensitivity of KBV cells to paclitaxel, vincristine, mitoxantrone and cisplatin with IC50 values of 3.19, 0.65, 125.30, and 4.54 nM, resp. The results of mechanistic anal. demonstrated that compound 16 inhibited the efflux function of P-gp by activating P-gp ATPase and increased the accumulation of rhodamine 123 in KBV cells. Importantly, the efficacy of paclitaxel against KBV cancer cell-derived xenograft tumors in nude mice was enhanced by compound 16 based on the growth suppression rate of 56.24%. These results indicated that introducing nitrogen-containing heterocycles could effectively improve the MDR reversal activity of HD derivatives, which appear to be promising lead compounds for tumor MDR reversal agent development.

SDS of cas: 823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Hu, Chao team published research in ACS Catalysis in 2021 | 823-78-9

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Product Details of C7H6Br2

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Product Details of C7H6Br2.

Hu, Chao;Farshadfar, Kaveh;Dietl, Martin C.;Cervantes-Reyes, Alejandro;Wang, Tao;Adak, Tapas;Rudolph, Matthias;Rominger, Frank;Li, Jun;Ariafard, Alireza;Hashmi, A. Stephen K. research published �Gold-Catalyzed [5,5]-Rearrangement� the research content is summarized as follows. A highly efficient gold-catalyzed cycloisomerization of 1,5-diynes to afford indeno[1,2-c]furans I [R = n-pentyl, Ph, 4-ClC6H4, etc.; R1 = H, 6-OMe 5-F, etc.; R2 = 4-MeC6H4, 2-IC6H4CH2, 3-I-4-MeC6H3, etc.] was developed. Various functional groups were tolerated under the mild reaction conditions, which provided an alternative approach for the synthesis of compounds I. On the basis of mechanistic studies, including crossover experiments, deuterium labeling and computational chem., the product formation proceeded via a formal [5,5]-sigmatropic rearrangement, a yet unknown reactivity pattern in gold catalysis. Instead of a synchronous concerted [5,5]-sigmatropic rearrangement and beyond an asynchronous concerted mode, each involving a single transition state, two energetically low transition states (1.8 and 5.6 kJ/mol) and an intermediate associate of the migrating benzyl cation and the vinyl gold species could be located in the computations.

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Product Details of C7H6Br2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

He, Fu-Sheng team published research in Organic Chemistry Frontiers in 2021 | 823-78-9

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Recommanded Product: 1-Bromo-3-(bromomethyl)benzene

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Recommanded Product: 1-Bromo-3-(bromomethyl)benzene.

He, Fu-Sheng;Zhang, Man;Zhang, Mengke;Luo, Xiangxiang;Wu, Jie research published �Iminyl radical initiated sulfonylation of alkenes with rongalite under photoredox conditions� the research content is summarized as follows. A photoredox-catalyzed reaction of oximes, rongalite and electrophiles was accomplished under mild conditions, which affords diverse pyrrole-substituted aliphatic sulfones or sulfonamides in moderate to good yields. This photoinduced sulfonylation with rongalite occurs efficiently with good functional group compatibility and excellent regioselectivity. During the reaction process, the sulfinate generated in-situ can be trapped by various electrophiles. A plausible mechanism was proposed, involving photoinduced iminyl radical-mediated cyclization and sulfonylation with sulfur dioxide radical anions from rongalite.

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Recommanded Product: 1-Bromo-3-(bromomethyl)benzene

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary