The author of 《Side-Chain Polymers as Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells-The Impact of Substituents’ Positions in Carbazole on Device Performance》 were Wu, Jianchang; Liu, Chang; Li, Bo; Gu, Fenglong; Zhang, Luozheng; Hu, Manman; Deng, Xiang; Qiao, Yuan; Mao, Yongyun; Tan, Wenchang; Tian, Yanqing; Xu, Baomin. And the article was published in ACS Applied Materials & Interfaces in 2019. Synthetic Route of C12H7Br2N The author mentioned the following in the article:
Side-chain polymers have the potential to be excellent dopant-free hole-transporting materials (HTMs) for perovskite solar cells (PSCs) because of their unique characteristics, such as tunable energy levels, high charge mobility, good solubility, and excellent film-forming ability. However, there has been less research focusing on side-chain polymers for PSCs. Here, two side-chain polystyrenes with triphenylamine substituents on carbazole moieties were designed and characterized. The properties of the side-chain polymers were tuned finely, including the photophys. and electrochem. properties and charge mobilities, by changing the positions of triphenylamine substituents on carbazole. Owing to the higher mobility and charge extraction ability, the polymer P2 with the triphenylamine substituent on the 3,6-positions of the carbazole unit showed higher performance with power conversion efficiency (PCE) of 18.45%, which was much higher than the PCE (16.78%) of P1 with 2,7-positions substituted. These results clearly demonstrated that side-chain polymers can act as promising HTMs for PSC applications and the performance of side-chain polymers could be optimized by carefully tuning the structure of the monomer, which provides a new strategy to design new kinds of side-chain polymers and obtain high-performance dopant-free HTMs. The experimental part of the paper was very detailed, including the reaction process of 3,6-Dibromo-9H-carbazole(cas: 6825-20-3Synthetic Route of C12H7Br2N)
3,6-Dibromo-9H-carbazole(cas: 6825-20-3) is used as a pharmaceutical intermediate, and also an important intermediate of synthesizing optoelectronic materials. It has been used as a reagent in the synthesis of P7C3-A20 which is a potent neuroprotective agent.Synthetic Route of C12H7Br2N
Referemce:
Bromide – Wikipedia,
bromide – Wiktionary