Tilekar, Kalpana et al. published their research in Journal of Medicinal Chemistry in 2021 | CAS: 615-55-4

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Recommanded Product: 615-55-4

Thiazolidinedione “Magic Bullets” Simultaneously Targeting PPARγ and HDACs: Design, Synthesis, and Investigations of their In Vitro and In Vivo Antitumor Effects was written by Tilekar, Kalpana;Hess, Jessica D.;Upadhyay, Neha;Bianco, Alessandra Lo;Schweipert, Markus;Laghezza, Antonio;Loiodice, Fulvio;Meyer-Almes, Franz-Josef;Aguilera, Renato J.;Lavecchia, Antonio;C S, Ramaa. And the article was included in Journal of Medicinal Chemistry in 2021.Recommanded Product: 615-55-4 This article mentions the following:

Monotargeting anticancer agents suffer from resistance and target nonspecificity concerns, which can be tackled with a multitargeting approach. The combined treatment with HDAC inhibitors and PPARγ agonists has displayed potential antitumor effects. Based on these observations, this work involves design and synthesis of mols. I (Ar = Ph, pyridin-2-yl, benzo[d]thiazol-2-yl, etc.) that can simultaneously target PPARγ and HDAC. Several out of 25 compounds inhibited HDAC4, and six compounds acted as dual-targeting agents. Compound I (Ar = 2-bromo-4,6-difluorophenyl) was the most potent, with activity toward PPARγ EC50 = 0.245μM and HDAC4 IC50 = 1.1μM. Addnl., compounds I (Ar = 4-methylphenyl, 2-bromo-4,6-difluorophenyl) were cytotoxic to CCRF-CEM cells (CC50 = 2.8 and 9.6μM, resp.), induced apoptosis, and caused DNA fragmentation. Furthermore, compound I (Ar = 4-methylphenyl) modulated the expression of c-Myc, cleaved caspase-3, and caused in vivo tumor regression in CCRF-CEM tumor xenografts. Thus, this study provides a basis for the rational design of dual/multitargeting agents that could be developed further as anticancer therapeutics. In the experiment, the researchers used many compounds, for example, 3,4-Dibromoaniline (cas: 615-55-4Recommanded Product: 615-55-4).

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Recommanded Product: 615-55-4

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Haruna, Kabiru et al. published their research in RSC Advances in 2016 | CAS: 615-55-4

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Many of the organo bromine compounds are relatively nonpolar. Bromine is more electronegative than carbon (2.8 vs 2.5) and hence the carbon in a carbon–bromine bond is electrophilic in nature. The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.COA of Formula: C6H5Br2N

Density functional theory study of the substituent effect on the structure, conformation and vibrational spectra in halosubstituted anilines was written by Haruna, Kabiru;Alenaizan, Asem A.;Al-Saadi, Abdulaziz A.. And the article was included in RSC Advances in 2016.COA of Formula: C6H5Br2N This article mentions the following:

A comparative d. functional theory (DFT) study exploring the structural and spectroscopic properties of the complete set of halosubstituted anilines with the halogens being F, Cl and Br was carried out. This study aims at understanding the effect of the type, number and positions of halogen substituents on the inversion barrier, geometrical properties and vibrational frequencies. The compounds were exclusively predicted to exist in the near-planar pyramidal form. While the order of stability is noted to be independent of the type of halogen substituents, the size of the inversion barrier is predicted to be sensitive to their number and positions, in accordance with former theor. and exptl. reports. The higher number of halogens leads to a more pronounced planarity character of the amino group. The deactivating nature of halogen atoms is believed to enhance the lone-pair electron delocalization in the order of bromo- > chloro- > fluoroanilines. An unusually strong electron delocalization nature is predicted to exist in the case of tetra- and penta-substituted haloanilines. In the experiment, the researchers used many compounds, for example, 3,4-Dibromoaniline (cas: 615-55-4COA of Formula: C6H5Br2N).

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Many of the organo bromine compounds are relatively nonpolar. Bromine is more electronegative than carbon (2.8 vs 2.5) and hence the carbon in a carbon–bromine bond is electrophilic in nature. The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.COA of Formula: C6H5Br2N

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Emokpae, Thomas A. et al. published their research in Journal of the Chemical Society in 1980 | CAS: 615-55-4

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. In the pharmaceutical industry organo bromine derivatives are used as sedatives, vasodilators, antiseptic agents, and anticancer agents.Safety of 3,4-Dibromoaniline

The kinetics of the reactions of picryl chloride with some substituted anilines. Part 6. 4-Substituted and 3,4-disubstituted anilines was written by Emokpae, Thomas A.;Eguavoen, Osa;Khalil-Ur-Rahman;Hirst, Jack. And the article was included in Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry (1972-1999) in 1980.Safety of 3,4-Dibromoaniline This article mentions the following:

Arrhenius parameters were determined for the reactions of picryl chloride in MeCN with substituted anilines: 4-RC6H4NH2 (R = F, Cl, Br, iodo, Me, OMe), 3,4-R2C6H3NH2 (R = Cl, Br, Me, OMe), 4,3-R(O2N)C6H3NH2 (R = F, Cl, Me), 3,4-R(MeO)C6H3NH2 (R = F, Cl, Br, iodo), 3,4-F(O2N)C6H3NH2 and 3,4,5-(MeO)3C6H2NH2. In the 3,4-disubstituted series the effect of 2 Me groups on the free energy of activation is strictly additive, but for the rest the measured rate constants are greater than those calculated on the assumption of additivity. The results are rationalized in terms of the positions of the transition states on the reaction coordinate. In the experiment, the researchers used many compounds, for example, 3,4-Dibromoaniline (cas: 615-55-4Safety of 3,4-Dibromoaniline).

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. In the pharmaceutical industry organo bromine derivatives are used as sedatives, vasodilators, antiseptic agents, and anticancer agents.Safety of 3,4-Dibromoaniline

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Li, Zhao-Ming et al. published their research in Chinese Journal of Chemistry in 2022 | CAS: 615-55-4

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. Bromine-containing agents predominate because not only are they more efficient than similar chlorine-containing species, but also the high atomic weight of bromine ensures that it is present in a high mass fraction within most organobromine compounds.HPLC of Formula: 615-55-4

Nickel-Catalyzed Electroreductive Syntheses of Triphenylenes Using ortho-Dihalobenzene-Derived Benzynes was written by Li, Zhao-Ming;Shuai, Bin;Ma, Cong;Fang, Ping;Mei, Tian-Sheng. And the article was included in Chinese Journal of Chemistry in 2022.HPLC of Formula: 615-55-4 This article mentions the following:

Electrochem. nickel-catalyzed syntheses of triphenylenes e.g., I, by a reductive trimerization of ortho-dibromobenzenes e.g.., 5,6-dibromoindane or ortho-bromoarylsulfurofluoridates e.g., 2-bromo-4-fluorophenyl sulfurofluoridate, or by reductive cross-coupling of ortho-dibromobenzenes to 2,2′-diiodobiphenyls, were described. The former provides a practical means for the construction of triphenylene derivatives e.g., ,I in up to 87% isolated yield at room temperature For 1,2-dihalo-3-methylbenzenes and related ortho-trisubstituted substrates, trimerizations proceed with high substrate-controlled regioselectivity for the non-C3h sym. triphenylene isomer. In the experiment, the researchers used many compounds, for example, 3,4-Dibromoaniline (cas: 615-55-4HPLC of Formula: 615-55-4).

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. Bromine-containing agents predominate because not only are they more efficient than similar chlorine-containing species, but also the high atomic weight of bromine ensures that it is present in a high mass fraction within most organobromine compounds.HPLC of Formula: 615-55-4

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Blatchly, Richard A. et al. published their research in Heterocycles in 1989 | CAS: 615-55-4

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.SDS of cas: 615-55-4

The Skraup reaction of 3,4-dihaloanilines was written by Blatchly, Richard A.;Greeley, Michael A.;Markgraf, J. Hodge. And the article was included in Heterocycles in 1989.SDS of cas: 615-55-4 This article mentions the following:

Six 3,4-dihaloanilines I (R = Br, Cl, F; R1 = Br, Cl, F, iodo) were converted by the sulfo-mix variation of the Skraup reaction to mixtures of 5,6- and 6,7-dihaloquinolines, II and III resp. Inductive effects were the dominant influence on the course of cyclization: the more highly electron-withdrawing the substituents of I, the greater was the proportion of III. Steric effects were absent. In the experiment, the researchers used many compounds, for example, 3,4-Dibromoaniline (cas: 615-55-4SDS of cas: 615-55-4).

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.SDS of cas: 615-55-4

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Iqbal, Zafar et al. published their research in Synlett in 2008 | CAS: 615-55-4

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Organo bromine compounds are versatile compounds and are widely used in diverse fields. Organo bromine derivatives are used in the dye sector, as an indicator in analytical chemistry (Bromothymol blue is a popular indicator). In the pharmaceutical industry organo bromine derivatives are used as sedatives, vasodilators, antiseptic agents, and anticancer agents.Formula: C6H5Br2N

Synthesis of phthalonitriles using a palladium catalyst was written by Iqbal, Zafar;Lyubimtsev, Alexey;Hanack, Michael. And the article was included in Synlett in 2008.Formula: C6H5Br2N This article mentions the following:

An easy synthetic method to obtain phthalonitriles from o-dibromobenzenes under mild conditions in high yields using Zn(CN)2 and a catalytic amount of tris(dibenzylideneacetone)dipalladium and 1,1′-bis(diphenylphosphino)ferrocene is described. In the experiment, the researchers used many compounds, for example, 3,4-Dibromoaniline (cas: 615-55-4Formula: C6H5Br2N).

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Organo bromine compounds are versatile compounds and are widely used in diverse fields. Organo bromine derivatives are used in the dye sector, as an indicator in analytical chemistry (Bromothymol blue is a popular indicator). In the pharmaceutical industry organo bromine derivatives are used as sedatives, vasodilators, antiseptic agents, and anticancer agents.Formula: C6H5Br2N

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Dyson, George M. et al. published their research in Journal of the Chemical Society in 1929 | CAS: 615-55-4

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. Many of the alkyl bromine derivatives are excellent alkylating agents since bromides are good leaving groups. Tribromides, like tetrabutylammonium tribromide, are used as a solid source of bromine. N-bromosuccimide (NBS) is used for the selective bromination of allylic bonds.Safety of 3,4-Dibromoaniline

Aminobenzothiazoles. XI. Synthesis of 5,4′-disubstituted 1-anilinobenzothiazoles from nuclear substituted thiocarbenilides was written by Dyson, George M.;Hunter, Robert F.;Soyka, Charles. And the article was included in Journal of the Chemical Society in 1929.Safety of 3,4-Dibromoaniline This article mentions the following:

(P-BrC6H4NH)2CS and Br in CHCl3 yield a perbromide, which, on heating, gives a hydropentabromide(I), C13H8N2Br2S.HBr.Br4, orange-red needles, m. 170掳 (decomposition) and rapidly loses Br on exposure to moist air suspended in H2SO3 and treated with SO2, there results 5,4′-dibromo-1-anilinobenzothiazole(II), m. 221掳; Ac derivative, m. 205-6掳; HBr salt, m. 250掳 (decomposition); Br gives I. 1-Chloro-5-bromobenzothiazole, m. 89掳, b13 157-9掳, results by heating p-BrC6H4NCS and PCl5 30-40 hrs. at 170-80掳 warming with p-BrC6H4NH2 gives II. p-BrC6H4NHCSNHPh and Br in CHCl3 give the hydrotribromide, m. 148掳 (decomposition), which is reduced to 4′-bromo-1-anilinobenzothiazole (III), m. 214-5掳, also obtained from 1-chlorobenzothiazole and p-BrC6H4NH2. Bromination of III gives II. 1-Anilinobenzothiazole yields a hexabromide, m. 140掳, which yields II on being dissolved in boiling absolute EtOH. Hugershoff’s dibromoanilinobenzothiazole (Ber. 36, 3121(1903)) appears to consist mainly of II, although the m. p. could not be raised above 200掳. Bromination of II gives an unstable orange hexabromide, m. 254掳, which gives with hot absolute EtOH a tetra-Br substitution derivative, m. 196-8掳. (p-ClC6H4NH)2CS and Br in CHCl3 yield a hydrotribromide, orange, m. 165-7掳 (decompm); reduction gives 5,4′-dichloro-1-aminobenzothiazole, m. 224掳; Ac derivative, m. 186-7掳; HBr salt. yellow, m. 217掳; hexabromide, orange, m. 263掳 (decomposition). p-ClC6H4NHCSNHPh yields a Br addition compound, orange, m. 130掳 (decomposition); 4′-chloro-1-anilinobenzothiazole, m. 196掳; this is also obtained from 1-chlorobenzothiazole and p-ClC6H4NH2. (p-IC6H4NH)2CS and Br in CHCl3 yield a red bromide, m. 185掳, and a yellow, m. 211掳; both, on reduction, yield 5,4′-diiodo-1-anilinobenzothiazole, m. 193掳 (decomposition); this also results by treating 1-anilinobenzothiazole in AcOH with ICl, warming the solution and diluting with H2O. (p-FC6H4NH)2CS gives a hydrotribromide, orange, m. 150-2掳 (decomposition); 5,4′-difluoro-1-anilinobenzothiazole, m. 227-8掳. 5,4′-Dinitro-1-anilinobenzothiazole, brilliant yellow, in. 280掳; this also results on nitration of 1-anilinobenzothiazole. (p-NCC6H4NH)2CS and Br give an addition product, golden, m. 159-60掳 (decomposition): 5,4′-dicyano-1-anilinobenzothiazole, m. 222掳. (p-EtO2CC6H4NH)2CS yields a hydropentabromide, orange, m. 110掳 (decompn); reduction gives Et 1-anilinobenzothiazole-5,4′-dicarboxylate, m. 190-2掳; hydrolysis gives the free acid, does not m. 290掳. (p-MeOC6H4NH)2CS yields a brick-red bromide, m. 137掳 (decomposition), reduced to a dibromo-5,4′-dimethoxy-1-anilinobenzothiazole, m. 240掳. PhNHCSNAcPh yields a hydrotribromide, orange, m. 167掳 (decomposition); the same compound is obtained from 1-acetanilinobenzothiazole, HBr and Br (Hugershoff, Ber. 36, 3136(1903)); Br in CHCl3 gives an orange hexa-Br addition compound, m. 163掳 (decomposition). In the experiment, the researchers used many compounds, for example, 3,4-Dibromoaniline (cas: 615-55-4Safety of 3,4-Dibromoaniline).

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. Many of the alkyl bromine derivatives are excellent alkylating agents since bromides are good leaving groups. Tribromides, like tetrabutylammonium tribromide, are used as a solid source of bromine. N-bromosuccimide (NBS) is used for the selective bromination of allylic bonds.Safety of 3,4-Dibromoaniline

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Hildebrand, Catherine et al. published their research in Journal of Medicinal Chemistry in 1990 | CAS: 615-55-4

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.Recommanded Product: 3,4-Dibromoaniline

Structure-activity relationships of N2-substituted guanines as inhibitors of HSV1 and HSV2 thymidine kinases was written by Hildebrand, Catherine;Sandoli, Daniele;Focher, Federico;Gambino, Joseph;Ciarrocchi, Giovanni;Spadari, Silvio;Wright, George. And the article was included in Journal of Medicinal Chemistry in 1990.Recommanded Product: 3,4-Dibromoaniline This article mentions the following:

Guanines I [R = Ph, substituted Ph, Bu, hexyl, (CH2)5OH, CH2Ph, CH2C6H4Cl] were prepared and tested for inhibition of the thymidine kinases encoded by Herpes simplex viruses type 1 and type 2. Compounds with hydrophobic, electron-attracting groups in the meta position of the Ph ring such as I (R = 3-CF3C6H4) were the most potent inhibitors of both enzymes. Many derivatives were significantly more potent against the type 2 thymidine kinase than against the type 1 and can effectively discriminate between the two enzymes. I [R = alkyl, (un)substituted CH2Ph] were moderately potent inhibitors, and the type 2 enzyme was again more sensitive than the type 1 enzyme. None of the compounds inhibited the thymidine kinase isolated from the host HeLa cell line, suggesting that members of this class of compounds may be useful nonsubstrate, antiviral compounds for latent herpesvirus infections. In the experiment, the researchers used many compounds, for example, 3,4-Dibromoaniline (cas: 615-55-4Recommanded Product: 3,4-Dibromoaniline).

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.Recommanded Product: 3,4-Dibromoaniline

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Tirfoin, Remi et al. published their research in Chemistry – A European Journal in 2015 | CAS: 615-55-4

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. Bromine-containing agents predominate because not only are they more efficient than similar chlorine-containing species, but also the high atomic weight of bromine ensures that it is present in a high mass fraction within most organobromine compounds.Application In Synthesis of 3,4-Dibromoaniline

Bifunctional Indenyl-Derived Receptors for Fluoride Chelation and Detection was written by Tirfoin, Remi;Abdalla, Joseph A. B.;Aldridge, Simon. And the article was included in Chemistry – A European Journal in 2015.Application In Synthesis of 3,4-Dibromoaniline This article mentions the following:

Anion receptors based on a [CpFe(indenyl)] scaffold offer the possibility for the incorporation of adjacent Lewis acidic functions onto a six-membered carbocyclic framework, while at the same time retaining the colorimetric/electrochem. reporter mechanisms available to synthetically simpler ferrocene systems. Thus, [CpFe(indenyl)] systems featuring mutually ortho BMes2 and PPh2Me+ substituents (with either 4,5 or 5,6 regiochem.) are accessible which are capable of cooperative fluoride ion fixation. Simultaneous binding at the borane and phosphonium centers can be established by spectroscopic, structural and computational approaches, and is responsible for the favorable thermodn. associated with F uptake. Thus, in contrast to simple BMes2 systems, the binding of fluoride is found to be more favorable than the uptake of cyanide (which interacts only with the borane Lewis acid). Moreover, in the case of a 4-(MePh2P)-5-(Mes2B)-7-Me-indenyl derivative, fluoride chelation is signalled not only by a large cathodic shift in the FeII/FeIII potential (>500 mV in THF), but also by a distinct color change from green (for the free receptor) to maroon for the adduct. In the experiment, the researchers used many compounds, for example, 3,4-Dibromoaniline (cas: 615-55-4Application In Synthesis of 3,4-Dibromoaniline).

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. Bromine-containing agents predominate because not only are they more efficient than similar chlorine-containing species, but also the high atomic weight of bromine ensures that it is present in a high mass fraction within most organobromine compounds.Application In Synthesis of 3,4-Dibromoaniline

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Dyson, George M. et al. published their research in Journal of the Chemical Society in 1929 | CAS: 615-55-4

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. Many of the alkyl bromine derivatives are excellent alkylating agents since bromides are good leaving groups. Tribromides, like tetrabutylammonium tribromide, are used as a solid source of bromine. N-bromosuccimide (NBS) is used for the selective bromination of allylic bonds.Safety of 3,4-Dibromoaniline

Aminobenzothiazoles. XI. Synthesis of 5,4′-disubstituted 1-anilinobenzothiazoles from nuclear substituted thiocarbenilides was written by Dyson, George M.;Hunter, Robert F.;Soyka, Charles. And the article was included in Journal of the Chemical Society in 1929.Safety of 3,4-Dibromoaniline This article mentions the following:

(P-BrC6H4NH)2CS and Br in CHCl3 yield a perbromide, which, on heating, gives a hydropentabromide(I), C13H8N2Br2S.HBr.Br4, orange-red needles, m. 170° (decomposition) and rapidly loses Br on exposure to moist air suspended in H2SO3 and treated with SO2, there results 5,4′-dibromo-1-anilinobenzothiazole(II), m. 221°; Ac derivative, m. 205-6°; HBr salt, m. 250° (decomposition); Br gives I. 1-Chloro-5-bromobenzothiazole, m. 89°, b13 157-9°, results by heating p-BrC6H4NCS and PCl5 30-40 hrs. at 170-80° warming with p-BrC6H4NH2 gives II. p-BrC6H4NHCSNHPh and Br in CHCl3 give the hydrotribromide, m. 148° (decomposition), which is reduced to 4′-bromo-1-anilinobenzothiazole (III), m. 214-5°, also obtained from 1-chlorobenzothiazole and p-BrC6H4NH2. Bromination of III gives II. 1-Anilinobenzothiazole yields a hexabromide, m. 140°, which yields II on being dissolved in boiling absolute EtOH. Hugershoff’s dibromoanilinobenzothiazole (Ber. 36, 3121(1903)) appears to consist mainly of II, although the m. p. could not be raised above 200°. Bromination of II gives an unstable orange hexabromide, m. 254°, which gives with hot absolute EtOH a tetra-Br substitution derivative, m. 196-8°. (p-ClC6H4NH)2CS and Br in CHCl3 yield a hydrotribromide, orange, m. 165-7° (decompm); reduction gives 5,4′-dichloro-1-aminobenzothiazole, m. 224°; Ac derivative, m. 186-7°; HBr salt. yellow, m. 217°; hexabromide, orange, m. 263° (decomposition). p-ClC6H4NHCSNHPh yields a Br addition compound, orange, m. 130° (decomposition); 4′-chloro-1-anilinobenzothiazole, m. 196°; this is also obtained from 1-chlorobenzothiazole and p-ClC6H4NH2. (p-IC6H4NH)2CS and Br in CHCl3 yield a red bromide, m. 185°, and a yellow, m. 211°; both, on reduction, yield 5,4′-diiodo-1-anilinobenzothiazole, m. 193° (decomposition); this also results by treating 1-anilinobenzothiazole in AcOH with ICl, warming the solution and diluting with H2O. (p-FC6H4NH)2CS gives a hydrotribromide, orange, m. 150-2° (decomposition); 5,4′-difluoro-1-anilinobenzothiazole, m. 227-8°. 5,4′-Dinitro-1-anilinobenzothiazole, brilliant yellow, in. 280°; this also results on nitration of 1-anilinobenzothiazole. (p-NCC6H4NH)2CS and Br give an addition product, golden, m. 159-60° (decomposition): 5,4′-dicyano-1-anilinobenzothiazole, m. 222°. (p-EtO2CC6H4NH)2CS yields a hydropentabromide, orange, m. 110° (decompn); reduction gives Et 1-anilinobenzothiazole-5,4′-dicarboxylate, m. 190-2°; hydrolysis gives the free acid, does not m. 290°. (p-MeOC6H4NH)2CS yields a brick-red bromide, m. 137° (decomposition), reduced to a dibromo-5,4′-dimethoxy-1-anilinobenzothiazole, m. 240°. PhNHCSNAcPh yields a hydrotribromide, orange, m. 167° (decomposition); the same compound is obtained from 1-acetanilinobenzothiazole, HBr and Br (Hugershoff, Ber. 36, 3136(1903)); Br in CHCl3 gives an orange hexa-Br addition compound, m. 163° (decomposition). In the experiment, the researchers used many compounds, for example, 3,4-Dibromoaniline (cas: 615-55-4Safety of 3,4-Dibromoaniline).

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. Many of the alkyl bromine derivatives are excellent alkylating agents since bromides are good leaving groups. Tribromides, like tetrabutylammonium tribromide, are used as a solid source of bromine. N-bromosuccimide (NBS) is used for the selective bromination of allylic bonds.Safety of 3,4-Dibromoaniline

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary