Iron catalysis of Grignard reductions. Mechanism of 1,3-reductive eliminations from γ-propyl halides was written by Rollick, K. L.;Nugent, W. A.;Kochi, J. K.. And the article was included in Journal of Organometallic Chemistry in 1982.Synthetic Route of C5H11BrO This article mentions the following:
The Fe3+-catalyzed reduction of 3-substituted propyl bromides by Grignard reagents gives propylene (I) and cyclopropane. The reduction to I is particularly noteworthy since it formally represents a 1,2-H shift. Two key intermediates are identified in I formation, in which MeO(CH2)3Br is first catalytically reduced to the Mg derivative by the Grignard reagent. The Fe3+-catalyzed β-elimination of the MeO(CH2)3MgBr intermediate gives CH2:CHCH2OMe, which is then reductively cleaved to I. Extensive studies of D labeling in the reactants, as well as in both intermediates, allow the course of the H shift to be followed unequivocally. The mechanism of Fe catalysis is proposed for the first and second stages of the reduction to I. In the experiment, the researchers used many compounds, for example, 1-Bromo-4-methoxybutane (cas: 4457-67-4Synthetic Route of C5H11BrO).
1-Bromo-4-methoxybutane (cas: 4457-67-4) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Synthetic Route of C5H11BrO
Referemce:
Bromide – Wikipedia,
bromide – Wiktionary