Tsai, Wan-Chen team published research in Bioorganic & Medicinal Chemistry in 2021 | 402-49-3

Application In Synthesis of 402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Application In Synthesis of 402-49-3.

Tsai, Wan-Chen;Gilbert, Nathan C.;Ohler, Amanda;Armstrong, Michelle;Perry, Steven;Kalyanaraman, Chakrapani;Yasgar, Adam;Rai, Ganesha;Simeonov, Anton;Jadhav, Ajit;Standley, Melissa;Lee, Hsiau-Wei;Crews, Phillip;Iavarone, Anthony T.;Jacobson, Matthew P.;Neau, David B.;Offenbacher, Adam R.;Newcomer, Marcia;Holman, Theodore R. research published 《 Kinetic and structural investigations of novel inhibitors of human epithelial 15-lipoxygenase-2》, the research content is summarized as follows. Human epithelial 15-lipoxygenase-2 (h15-LOX-2, ALOX15B) is expressed in many tissues and has been implicated in atherosclerosis, cystic fibrosis and ferroptosis. However, there are few reported potent/selective inhibitors that are active ex vivo. In the current work, we report newly discovered mols. that are more potent and structurally distinct from our previous inhibitors, MLS000545091 and MLS000536924 (Jameson et al, PLoS One, 2014, 9, e104094), in that they contain a central imidazole ring, which is substituted at the 1-position with a Ph moiety and with a benzylthio moiety at the 2-position. The initial three mols. were mixed-type, non-reductive inhibitors, with IC50 values of 0.34 ± 0.05 μM for MLS000327069, 0.53 ± 0.04 μM for MLS000327186 and 0.87 ± 0.06 μM for MLS000327206 and greater than 50-fold selectivity vs. h5-LOX, h12-LOX, h15-LOX-1, COX-1 and COX-2. A small set of focused analogs was synthesized to demonstrate the validity of the hits. In addition, a binding model was developed for the three imidazole inhibitors based on computational docking and a co-structure of h15-LOX-2 with MLS000536924. Hydrogen/deuterium exchange (HDX) results indicate a similar binding mode between MLS000536924 and MLS000327069, however, the latter restricts protein motion of helix-α2 more, consistent with its greater potency. Given these results, we designed, docked, and synthesized novel inhibitors of the imidazole scaffold and confirmed our binding mode hypothesis. Importantly, four of the five inhibitors mentioned above are active in an h15-LOX-2/HEK293 cell assay and thus they could be important tool compounds in gaining a better understanding of h15-LOX-2′s role in human biol. As such, a suite of similar pharmacophores that target h15-LOX-2 both in vitro and ex vivo are presented in the hope of developing them as therapeutic agents.

Application In Synthesis of 402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Tang, Haifeng team published research in Journal of Medicinal Chemistry in 2022 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Synthetic Route of 402-49-3

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Synthetic Route of 402-49-3.

Tang, Haifeng;Jensen, Kristian;Houang, Evelyne;McRobb, Fiona M.;Bhat, Sathesh;Svensson, Mats;Bochevarov, Art;Day, Tyler;Dahlgren, Markus K.;Bell, Jeffery A.;Frye, Leah;Skene, Robert J.;Lewis, James H.;Osborne, James D.;Tierney, Jason P.;Gordon, James A.;Palomero, Maria A.;Gallati, Caroline;Chapman, Robert S. L.;Jones, Daniel R.;Hirst, Kim L.;Sephton, Mark;Chauhan, Alka;Sharpe, Andrew;Tardia, Piero;Dechaux, Elsa A.;Taylor, Andrea;Waddell, Ross D.;Valentine, Andrea;Janssens, Holden B.;Aziz, Omar;Bloomfield, Dawn E.;Ladha, Sandeep;Fraser, Ian J.;Ellard, John M. research published 《 Discovery of a Novel Class of D-Amino Acid Oxidase Inhibitors Using the Schrödinger Computational Platform》, the research content is summarized as follows. D-Serine is a coagonist of the N-Me D-aspartate (NMDA) receptor, a key excitatory neurotransmitter receptor. In the brain, D-serine is synthesized from its L-isomer by serine racemase and is metabolized by the D-amino acid oxidase (DAO, DAAO). Many studies have linked decreased D-serine concentration and/or increased DAO expression and enzyme activity to NMDA dysfunction and schizophrenia. Thus, it is feasible to employ DAO inhibitors for the treatment of schizophrenia and other indications. Powered by the Schrödinger computational modeling platform, we initiated a research program to identify novel DAO inhibitors with the best-in-class properties. The program execution leveraged an hDAO FEP+ model to prospectively predict compound potency. A new class of DAO inhibitors with desirable properties has been discovered from this endeavor. Our modeling technol. on this program has not only enhanced the efficiency of structure-activity relationship development but also helped to identify a previously unexplored subpocket for further optimization.

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Synthetic Route of 402-49-3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Tao, Sibei team published research in European Journal of Medicinal Chemistry in 2022 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Computed Properties of 402-49-3

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 402-49-3, formula is C8H6BrF3, The most pervasive is the naturally produced bromomethane. Computed Properties of 402-49-3

Tao, Sibei;Tao, Shaohua;Guo, Fan;Zhang, Lidan;Zhao, Lifeng;Fu, Ping;Ma, Liang research published 《 Discovery of indol-6-yl-pyrrolo[2,3-c]pyridin-7-one derivatives as bromodomain-containing protein 4 (BRD4) inhibitors for the treatment of kidney fibrosis》, the research content is summarized as follows. In the study, authors synthesized a series of indol-6-yl-pyrrolo[2,3-c]pyridin-7-one derivatives I (R1 = 2-Bu, Bn, pyridin-2-ylmethyl, etc.) and biol. evaluated against BRD4 for structure-activity relationship (SAR). Notably, I (R1 = pyridin-2-ylmethyl) (ZLD2218) exhibited the most potent inhibitory activity against BRD4, with the IC50 value of 107 nM, which was comparative to 92 nM of pos. control JQ-1. Importantly, at the dose of 15 and 30 mg/kg/d for consecutive 8 days, ZLD2218 alleviated kidney injury and fibrosis in unilateral ureteral obstruction (UUO) mice, with the 30 mg/kg/d being competitive to 100 mg/kd/d of JQ1. Mech., ZLD2218 inhibited BRD4 expression and further suppressed fibrotic signaling in the kidneys of UUO mice and TGF-β1-stimulated TCMK-1 cells. Furthermore, ZLD2218 at the dose of 30 mg/kg/d for 8 days to C57BL/6J mice did not affect liver, kidney function and organ pathol. changes. Collectively, I (R1 = pyridin-2-ylmethyl) (ZLD2218) might be a promising lead compound of BRD4 inhibitor for the treatment of kidney fibrosis.

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Computed Properties of 402-49-3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Tezcan, Burcu team published research in Journal of Biochemical and Molecular Toxicology in 2022 | 402-49-3

Synthetic Route of 402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Organic compounds having carbon bonded to bromine are called organic bromides. Synthetic Route of 402-49-3.

Tezcan, Burcu;Gok, Yetkin;Sevincek, Resul;Taslimi, Parham;Taskin-Tok, Tugba;Aktas, Aydin;Guezel, Bilgehan;Ayguen, Muhittin;Guelcin, Ilhami research published 《 Benzimidazolium salts bearing the trifluoromethyl group as organofluorine compounds: Synthesis, characterization, crystal structure, in silico study, and inhibitory profiles against acetylcholinesterase and α-glycosidase》, the research content is summarized as follows. Here, we report the synthesis, characterization, and biol. activities of a series of benzimidazolium salts bearing the trifluoromethylbenzyl group. All benzimidazolium salts were characterized by using NMR (NMR) (1H NMR and 13C NMR), Fourier transform-IR spectroscopy, and elemental anal. techniques. The crystal structures of some of these compounds were obtained by the single-crystal X-ray diffraction method. Furthermore, the acetylcholinesterase (AChE) and α-glycosidase (α-Gly) enzyme inhibition activities of these compounds were investigated. The obtained results revealed that 2e, with Ki value of 1.36 ± 0.34 μM against AChE and 3d with Ki value of 91.37 ± 10.38 μM against α-Gly, were the most potent compounds against both assigned enzymes. It should be noted that most of the synthesized compounds were more potent than standard inhibitor tacrine (TAC) against AChE. In silico studies, we focused on compound 2e, 3d, 3e, and 3f as potent inhibitors of AChE and α-Gly, the compound 2e showed good binding energy (-10.23 kcal/mol), among the three selected compounds and pos. control (-10.18, -10.08, and -7.37 kcal/mol for 3d, 3f, and TAC, resp.). Likewise, as a result of the same compounds against the α-Gly enzyme, the compound 3d had the highest binding affinity (-8.39 kcal/mol) between the four selected compounds and the pos. control (-8.27, -8.10, -8.06, and -7.53 kcal/mol for 3f, 3e, 2e, and acarbose, resp.). From the absorption, distribution, metabolism, excretion, and toxicity analyses, it can be concluded that the compounds under consideration exhibited more drug-likeness properties in the prediction studies compared to pos. controls.

Synthetic Route of 402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Thirugnanasambandam, Eswaramoorthi team published research in Energy & Fuels in 2022 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., COA of Formula: C8H6BrF3

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. COA of Formula: C8H6BrF3.

Thirugnanasambandam, Eswaramoorthi;Shanmugam, Ganesan;Selvaraj, Balamurugan research published 《 A Newly Synthesized Copper Redox Couple Electrolyte with Activated Carbon Electrode from Samanea saman Wood Tissue for Flexible Supercapacitor》, the research content is summarized as follows. The search for new superior electrode materials and modifications of electrolyte portions is one of the most significant responsibilities in developing supercapacitors. To enhance the cell voltage and efficiency of supercapacitors, we propose using activated Samanea saman wood shell carbon as an electrode and a new unique copper metal complex as an electrolyte for the first time. We synthesized a sheet-like structure of activated Samanea saman wood shell carbon using a pyrolysis process and synthesized a new novel copper metal complex bound with the H2SO4 electrolyte in this combination fabrication for a supercapacitor (RESC). The redox couple aided SC exhibits an outstanding electrochem. performance that is attributed to the maximum specific capacitance value of 599 F g-1 and long lifespan of 98.9% specific capacitance after 8500 charge-discharge cycles in the half (three-electrode)-cell configuration. The activated carbon as cathode, graphite as anode, and gel formation of the copper metal complex bound with H2SO4 electrolyte were used to construct the (RESC) supercapacitor device. This RESC device achieved 70.7 W h kg-1 energy d. and power d. of 534.75 W kg-1. The combination of activated carbon electrode material and copper metal complex mediator provided the way for the development of a more efficient material for supercapacitors (SCs).

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., COA of Formula: C8H6BrF3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Szczesniak, Piotr team published research in Chemical Communications (Cambridge, United Kingdom) in 2022 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Recommanded Product: 1-(Bromomethyl)-4-(trifluoromethyl)benzene

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Recommanded Product: 1-(Bromomethyl)-4-(trifluoromethyl)benzene.

Szczesniak, Piotr;Furman, Bartlomiej research published 《 Photo-Fries-type rearrangement of cyclic enamides. An efficient route to structurally diverse five-membered enaminones》, the research content is summarized as follows. A simple, efficient and user-friendly protocol for the preparation of structurally diverse enaminones e.g., I from enamides e.g., II has been developed. The strategy is based on a photo-induced intramol. Fries-type rearrangement. The photochem. transformation proceeds under mild reaction conditions, applies to a broad substrate range, is highly economic, and limits the amount of waste produced. The proposed methodol. was used as a key step in the synthesis of dihydrojasmone an important fragrance compound

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Recommanded Product: 1-(Bromomethyl)-4-(trifluoromethyl)benzene

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Shin, Young-Hee team published research in Angewandte Chemie, International Edition in 2022 | 402-49-3

Application of C8H6BrF3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Application of C8H6BrF3.

Shin, Young-Hee;Jeong, Kiyoung;Lee, Jihye;Lee, Hyo Jung;Yim, Junhyeong;Kim, Jonghoon;Kim, Seungtaek;Park, Seung Bum research published 《 Inhibition of ACE2-Spike Interaction by an ACE2 Binder Suppresses SARS-CoV-2 Entry》, the research content is summarized as follows. The emergence of SARS-CoV-2 variants is a significant concern in developing effective therapeutics and vaccines in the middle of the ongoing COVID-19 pandemic. Here, we have identified a novel small mol. that inhibited the interactions between SARS-CoV-2 spike RBDs and ACE2 by modulating ACE2 without impairing its enzymic activity necessary for normal physiol. functions. Furthermore, the identified compounds suppressed viral infection in cultured cells by inhibiting the entry of ancestral and variant SARS-CoV-2. Our study suggests that targeting ACE2 could be a novel therapeutic strategy to inhibit SARS-CoV-2 entry into host cells and prevent the development of COVID-19.

Application of C8H6BrF3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Sercel, Zachary P. team published research in Organic Letters in 2021 | 402-49-3

Formula: C8H6BrF3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Organic compounds having carbon bonded to bromine are called organic bromides. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Formula: C8H6BrF3.

Sercel, Zachary P.;Sun, Alexander W.;Stoltz, Brian M. research published 《 Synthesis of Enantioenriched gem-Disubstituted 4-Imidazolidinones by Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation》, the research content is summarized as follows. A variety of enantioenriched gem-disubstituted 4-imidazolidinones were prepared in up to >99% yield and 95% ee by the Pd-catalyzed decarboxylative asym. allylic alkylation of imidazolidinone-derived β-amidoesters. In the process of preparing these substrates, a rapid synthetic route to 4-imidazolidinone derivatives was developed, beginning from 2-thiohydantoin. The orthogonality of the benzoyl amide and tert-Bu carbamate groups used to protect these nitrogen-rich products was demonstrated, enabling potential applications in drug design.

Formula: C8H6BrF3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Saini, Parul team published research in Asian Journal of Organic Chemistry in 2021 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Related Products of 402-49-3

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Organic compounds having carbon bonded to bromine are called organic bromides. Related Products of 402-49-3.

Saini, Parul;Krishnan, Anandhu;Yadav, Deepak;Hazra, Susanta;Elias, Anil J. research published 《 External Catalyst-Free Oxidation of Benzyl Halides to Benzoic Acids Using NaOH/TBHP in Water》, the research content is summarized as follows. An efficient and metal-free methodol. for the oxidation of benzyl halides to benzoic acids using an inexpensive and green oxidant (TBHP) in aqueous basic medium has been developed. This protocol offers an excellent way to avoid adding catalysts and involves the use of an in-situ generated halide ion as catalyst. It is also the first report on the oxidation of benzyl iodides to benzoic acids. A series of carboxylic acids were prepared from benzyl halides in high yields under mild reaction conditions by this method which does not require chromatog. purification Gram scale reactions for the synthesis of the carboxylic acids in good yields have been successfully carried out using benzyl chloride, bromide and iodide. As an industrial application, the synthesis of a key monomer used for the synthesis of polyethylene terephthalate (PET), i. e., terephthalic acid (PTA), has also been accomplished in good yields.

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Related Products of 402-49-3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Saint-Jacques, Kevin team published research in Chemical Communications (Cambridge, United Kingdom) in 2022 | 402-49-3

Application of C8H6BrF3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Application of C8H6BrF3.

Saint-Jacques, Kevin;Ladd, Carolyn L.;Charette, Andre B. research published 《 Access to hexahydroazepinone heterocycles via palladium-catalysed C(sp3)-H alkenylation/ring-opening of cyclopropanes》, the research content is summarized as follows. Synthesis of novel hexahydroazepinone derivatives I [R = H, 8-tert-Bu, 8-Ph, etc.; R1 = Me, Bn, 2-BrC6H4CH2, etc.; n = 1,2,3] starting from N-cyclopropyl-N-methylcycloalkene-carboxamides in presence of a readily available palladium catalyst was repored. The reaction proceeded through a selective C(sp3)-H alkenylation/ring-opening process to obtain the seven-membered ring products I in good to excellent yields on a wide variety of substrates under batch, microwave and continuous flow conditions.

Application of C8H6BrF3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary