Glynn, Daniel et al. published their research in Chemistry – A European Journal in 2010 | CAS: 35065-86-2

3-Bromophenyl acetate (cas: 35065-86-2) belongs to organobromine compounds. Many of the organo bromine compounds are relatively nonpolar. Bromine is more electronegative than carbon (2.8 vs 2.5) and hence the carbon in a carbon–bromine bond is electrophilic in nature. In the pharmaceutical industry organo bromine derivatives are used as sedatives, vasodilators, antiseptic agents, and anticancer agents.Recommanded Product: 35065-86-2

On the Scope of Trimethylaluminum-Promoted 1,2-Additions of ArZnX Reagents to Aldehydes was written by Glynn, Daniel;Shannon, Jonathan;Woodward, Simon. And the article was included in Chemistry – A European Journal in 2010.Recommanded Product: 35065-86-2 This article mentions the following:

A practical asym. 1,2-addition of functionalized arylzinc halides to aromatic and aliphatic aldehydes is described by the use of aminoalc. catalysis in the presence of AlMe3. The process is simple to carry out, uses only com. available reagents/ligands and provides moderate to good (80-96 % ee) enantioselectivities for a wide range of substrates. Either com. ArZnX reagents or those prepared in situ from low cost aryl bromides can be used. In the latter case electrophilic functional groups are tolerated (CO2Et, CN). The reaction relies on rapid exchange between ArZnX and AlMe3 to generate mixed organometallic species that lead to the formation of a key intermediate that is distinctly different from the classic “anti” transition states of Noyori. NMR monitoring and related experiments have been used to probe the validity of the proposed selective transition state. In the experiment, the researchers used many compounds, for example, 3-Bromophenyl acetate (cas: 35065-86-2Recommanded Product: 35065-86-2).

3-Bromophenyl acetate (cas: 35065-86-2) belongs to organobromine compounds. Many of the organo bromine compounds are relatively nonpolar. Bromine is more electronegative than carbon (2.8 vs 2.5) and hence the carbon in a carbon–bromine bond is electrophilic in nature. In the pharmaceutical industry organo bromine derivatives are used as sedatives, vasodilators, antiseptic agents, and anticancer agents.Recommanded Product: 35065-86-2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Romanelli, Gustavo P. et al. published their research in E-Journal of Chemistry in 2008 | CAS: 35065-86-2

3-Bromophenyl acetate (cas: 35065-86-2) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.Application In Synthesis of 3-Bromophenyl acetate

A simple and mild acylation of alcohols, phenols, amines, and thiols with a reusable heteropoly acid catalyst (H6P2W18O62·24 H2O) was written by Romanelli, Gustavo P.;Bennardi, Daniel O.;Autino, Juan C.;Baronetti, Graciela T.;Thomas, Horacio J.. And the article was included in E-Journal of Chemistry in 2008.Application In Synthesis of 3-Bromophenyl acetate This article mentions the following:

The acylation of alcs., phenols, thiols, and amines with varied substitution using acid anhydrides is efficiently catalyzed by Wells-Dawson heteropoly acid (H6P2W18O62·24 H2O). Reactions proceed with very good to excellent yield in air at room temperature, using toluene as solvent (40 examples). The bulk catalyst was easily reused without appreciable loss of its activity. In the experiment, the researchers used many compounds, for example, 3-Bromophenyl acetate (cas: 35065-86-2Application In Synthesis of 3-Bromophenyl acetate).

3-Bromophenyl acetate (cas: 35065-86-2) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.Application In Synthesis of 3-Bromophenyl acetate

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Akamanchi, K. G. et al. published their research in Pharmacy and Pharmacology Communications in 1999 | CAS: 35065-86-2

3-Bromophenyl acetate (cas: 35065-86-2) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon–bromine bond is electrophilic, i.e. alkyl bromides are alkylating agents. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Safety of 3-Bromophenyl acetate

Synthesis and in-vitro evaluation of platelet aggregation inhibitory activity of paeonol and its analogs was written by Akamanchi, K. G.;Padmawar, P. A.;Thatte, U. M.;Rege, N. N.;Dahanukar, S. A.. And the article was included in Pharmacy and Pharmacology Communications in 1999.Safety of 3-Bromophenyl acetate This article mentions the following:

Paeonol (1-(2-hydroxy-4-methoxyphenyl)ethanone) and a series of substituted 1-(2-hydroxyphenyl)ethanone derivatives were synthesized and screened as inhibitors of platelet aggregation. The compounds with the greatest anti-platelet potential among the series tested were 1-(2,5-dihydroxyphenyl)ethanone (65.36% inhibition at 300 μM against 5 μM ADP), paeonol (36.31%), 1-(2-hydroxy-5-methoxyphenyl)ethanone (24.47%), 1-(2-hydroxy-5-nitrophenyl) ethanone (30.40%), and 1-(5-chloro-2-hydroxy-4-methylphenyl)ethanone (24.43%). In the experiment, the researchers used many compounds, for example, 3-Bromophenyl acetate (cas: 35065-86-2Safety of 3-Bromophenyl acetate).

3-Bromophenyl acetate (cas: 35065-86-2) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon–bromine bond is electrophilic, i.e. alkyl bromides are alkylating agents. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Safety of 3-Bromophenyl acetate

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary