Tan, Fei; Pu, Maoping; He, Jun; Li, Jinzhao; Yang, Jian; Dong, Shunxi; Liu, Xiaohua; Wu, Yun-Dong; Feng, Xiaoming published an article in 2021. The article was titled 《Catalytic Asymmetric Homologation of Ketones with α-Alkyl α-Diazo Esters》, and you may find the article in Journal of the American Chemical Society.Application of 3395-91-3 The information in the text is summarized as follows:
The homologation of ketones with diazo compounds was a useful strategy to synthesize one-carbon chain-extended acyclic such as PhC(O)CMeCO2MeR [R = allyl, Bn, CH2(2-naphthyl), etc.] or ring-expanded cyclic ketones e.g., I. However, the asym. homologation of acyclic ketones with α-diazo esters remains a challenge due to the lower reactivity and complicated selectivity. Herein, the enantioselective catalytic homologation of acetophenone and related derivatives with α-alkyl α-diazo esters was reported utilizing a chiral scandium(III) N,N’-dioxide as the Lewis acid catalyst. This reaction supplies a highly chemo-, regio-, and enantioselective pathway for the synthesis of optically active β-keto esters with an all-carbon quaternary center through highly selective alkyl-group migration of the ketones. Moreover, the ring expansion of cyclic ketones was accomplished under slightly modified conditions, affording a series of enantioenriched cyclic β-keto esters. D. functional theory calculations was carried out to elucidate the reaction pathway and possible working models that could explain the observed regio- and enantioselectivity. The experimental process involved the reaction of Methyl 3-bromopropanoate(cas: 3395-91-3Application of 3395-91-3)
Methyl 3-bromopropanoate(cas: 3395-91-3) belongs to bromides. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact.Application of 3395-91-3
Referemce:
Bromide – Wikipedia,
bromide – Wiktionary