Wang, Yan-En et al. published their research in Chinese Chemical Letters in 2017 | CAS: 166821-88-1

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Product Details of 166821-88-1

Synthesis of fluorescent bisboronic acid sensors and their recognition of mono-/oligo-saccharides was written by Wang, Yan-En;Rong, Rui-Xue;Chen, Hua;Zhu, Meng-Yuan;Wang, Bing-He;Li, Xiao-Liu. And the article was included in Chinese Chemical Letters in 2017.Product Details of 166821-88-1 This article mentions the following:

Sensors capable of recognizing cell surface carbohydrates, such as sialyl Lewis X (sLex), are invaluable research tools and for the diagnosis and early detection of many forms of cancer. In this paper, we report the design and synthesis of a series of bisboronic acids 6(a-f) as fluorescent sensors towards mono-/oligosaccharides. Among them, compounds 6d and 6e showed strong binding affinities with glucose and fructose, while compound 6c, in which two anthracene-based boronic acid units were linked by a hexamethylene spacer, was able to recognize sLex selectivity and stained HEPG2 cells at 1 婵炴挾鎸紀l/L. In the experiment, the researchers used many compounds, for example, 2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1Product Details of 166821-88-1).

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Product Details of 166821-88-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Stones, Duane et al. published their research in Chemistry – A European Journal in 2004 | CAS: 166821-88-1

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Synthetic Route of C12H16BBrO2

Modular solid-phase synthetic approach to optimize structural and electronic properties of oligo-boronic acid receptors and sensors for the aqueous recognition of oligosaccharides was written by Stones, Duane;Manku, Sukhdev;Lu, Xiaosong;Hall, Dennis G.. And the article was included in Chemistry – A European Journal in 2004.Synthetic Route of C12H16BBrO2 This article mentions the following:

This article describes the design and optimization of the first entirely modular, parallel solid-phase synthetic approach for the generation of well-defined polyamine oligo-boronic acid receptors and fluorescence sensors for complex oligosaccharides. The synthetic approach allows an effective building of the receptor polyamine backbone, followed by the controlled diversification of the amine benzylic side chains. This approach enabled the testing, in a modular fashion, of the effect of different aryl-boronic acid units substituted with un-encumbering para electron-withdrawing or electron-donating groups. The feasibility of this approach toward automated synthesis was also investigated with the assembly of a sub-library of receptors by means of the Irori MiniKan technol. Several sub-libraries of anthracene-capped sensors containing two or three aryl-boronic acids were synthesized, and their binding to a series of model disaccharides was examined in neutral aqueous media. The calculation of association constants by fluorescence titrations confirmed that subtle changes in the structures of the inter-amine spacers in the polyamine backbone can have a significant effect on the stability of the resulting complexes. Most importantly, this study led to the determination of the preferred electronic characteristics for the aryl-boronate units, and suggests that a new generation of receptors containing very electron-poor aryl-boronic acids could lead to a significant improvement of binding affinities. In the experiment, the researchers used many compounds, for example, 2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1Synthetic Route of C12H16BBrO2).

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Synthetic Route of C12H16BBrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Uddin, Jamal Md. et al. published their research in Inorganica Chimica Acta in 2012 | CAS: 166821-88-1

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Formula: C12H16BBrO2

Photoinduced electron transfer quenching and sugar effects on the electrostatic interaction between an anionic Ru(II) complex and cationic bipyridinium derivatives functionalized with boronic acids was written by Uddin, Jamal Md.;DiCesare, Nicolas;Lakowicz, Joseph R.. And the article was included in Inorganica Chimica Acta in 2012.Formula: C12H16BBrO2 This article mentions the following:

The photoinduced electron transfer quenching of an anionic ruthenium(II) metal-ligand-complex (Ru(dpp(SO3Na)))2(mcbpy)Cl2 by two boronic acid functionalized benzyl viologen (BV2+) derivatives has been investigated as well as their response to sugar. The electrostatic interaction between these two charge species lead to the formation of static quenching which is removed in presence of sugar due to the formation of a neutral zwitterionic quencher. Spectral data, quenching parameters and sugar titration curves are presented and discussed in term of future developments of optical sensors for sugar. In the experiment, the researchers used many compounds, for example, 2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1Formula: C12H16BBrO2).

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Formula: C12H16BBrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Wang, Kai et al. published their research in ACS Sensors in 2021 | CAS: 166821-88-1

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.HPLC of Formula: 166821-88-1

Synthesis of Diboronic Acid-Based Fluorescent Probes for the Sensitive Detection of Glucose in Aqueous Media and Biological Matrices was written by Wang, Kai;Zhang, Ruixiao;Yue, Xinmin;Zhou, Zheng;Bai, Lihuan;Tong, Yue;Wang, Bei;Gu, Dening;Wang, Shuo;Qiao, Yanqi;Liu, Qian;Xue, Xue;Yin, Yongmei;Xi, Rimo;Meng, Meng. And the article was included in ACS Sensors in 2021.HPLC of Formula: 166821-88-1 This article mentions the following:

Reliable and accurate glucose detection in biol. samples is of great importance in clin. diagnosis and medical research. Chem. probes are advantageous in simple operation and flexible design, especially for the development of fluorescent probes. Anthracene-based diboronic acid (P-DBA) has shown potential in glucose probing because of its high sensitivity. However, poor solubility limits its applications in aqueous media. In this work, we systemically modify P-DBA by introducing fluoro (F-), chloro (Cl-), methoxyl (MeO-), or cyano (CN-) substituents. Among these probes, the cyano-substituted probe (CN-DBA) displays the highest glucose-binding constant (6489.5 M-1, 33% MeOH). More importantly, it shows good water solubility in the aqueous solution (0.5% MeOH), with ultrasensitive recognition with glucose (LOD = 1.51 娓璏) and robust sensing from pH 6.0 to 9.0. Based on these features, the CN-DBA is finally applied to detect glucose in cell lysates and plasma, with satisfactory recovery and precision. These results demonstrate that CN-DBA could serve as an accurate, sensitive fluorescent probe for glucose assays in biol. samples. In the experiment, the researchers used many compounds, for example, 2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1HPLC of Formula: 166821-88-1).

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.HPLC of Formula: 166821-88-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Wang, Wei et al. published their research in Organic Letters in 1999 | CAS: 166821-88-1

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon閳ユ彽romine bond is electrophilic, i.e. alkyl bromides are alkylating agents. Commercially available organobromine pharmaceuticals include the vasodilator nicergoline, the sedative brotizolam, the anticancer agent pipobroman, and the antiseptic merbromin. Product Details of 166821-88-1

Building fluorescent sensors by template polymerization: the preparation of a fluorescent sensor for D-fructose was written by Wang, Wei;Gao, Shouhai;Wang, Binghe. And the article was included in Organic Letters in 1999.Product Details of 166821-88-1 This article mentions the following:

The application of mol. imprinting in making fluorescent sensors was hampered by the lack of suitable fluorescent tags, which would respond to the binding event with significant fluorescence intensity changes. The authors have designed and synthesized a fluorescent monomer which allows for the preparation of fluorescent sensors of cis diols using mol. imprinting methods. This monomer was used for the preparation of sensitive fluorescent sensors for D-fructose. In the experiment, the researchers used many compounds, for example, 2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1Product Details of 166821-88-1).

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon閳ユ彽romine bond is electrophilic, i.e. alkyl bromides are alkylating agents. Commercially available organobromine pharmaceuticals include the vasodilator nicergoline, the sedative brotizolam, the anticancer agent pipobroman, and the antiseptic merbromin. Product Details of 166821-88-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Wang, Yan-En et al. published their research in Chinese Chemical Letters in 2017 | CAS: 166821-88-1

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Product Details of 166821-88-1

Synthesis of fluorescent bisboronic acid sensors and their recognition of mono-/oligo-saccharides was written by Wang, Yan-En;Rong, Rui-Xue;Chen, Hua;Zhu, Meng-Yuan;Wang, Bing-He;Li, Xiao-Liu. And the article was included in Chinese Chemical Letters in 2017.Product Details of 166821-88-1 This article mentions the following:

Sensors capable of recognizing cell surface carbohydrates, such as sialyl Lewis X (sLex), are invaluable research tools and for the diagnosis and early detection of many forms of cancer. In this paper, we report the design and synthesis of a series of bisboronic acids 6(a-f) as fluorescent sensors towards mono-/oligosaccharides. Among them, compounds 6d and 6e showed strong binding affinities with glucose and fructose, while compound 6c, in which two anthracene-based boronic acid units were linked by a hexamethylene spacer, was able to recognize sLex selectivity and stained HEPG2 cells at 1 娓璵ol/L. In the experiment, the researchers used many compounds, for example, 2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1Product Details of 166821-88-1).

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Product Details of 166821-88-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Stones, Duane et al. published their research in Chemistry – A European Journal in 2004 | CAS: 166821-88-1

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Synthetic Route of C12H16BBrO2

Modular solid-phase synthetic approach to optimize structural and electronic properties of oligo-boronic acid receptors and sensors for the aqueous recognition of oligosaccharides was written by Stones, Duane;Manku, Sukhdev;Lu, Xiaosong;Hall, Dennis G.. And the article was included in Chemistry – A European Journal in 2004.Synthetic Route of C12H16BBrO2 This article mentions the following:

This article describes the design and optimization of the first entirely modular, parallel solid-phase synthetic approach for the generation of well-defined polyamine oligo-boronic acid receptors and fluorescence sensors for complex oligosaccharides. The synthetic approach allows an effective building of the receptor polyamine backbone, followed by the controlled diversification of the amine benzylic side chains. This approach enabled the testing, in a modular fashion, of the effect of different aryl-boronic acid units substituted with un-encumbering para electron-withdrawing or electron-donating groups. The feasibility of this approach toward automated synthesis was also investigated with the assembly of a sub-library of receptors by means of the Irori MiniKan technol. Several sub-libraries of anthracene-capped sensors containing two or three aryl-boronic acids were synthesized, and their binding to a series of model disaccharides was examined in neutral aqueous media. The calculation of association constants by fluorescence titrations confirmed that subtle changes in the structures of the inter-amine spacers in the polyamine backbone can have a significant effect on the stability of the resulting complexes. Most importantly, this study led to the determination of the preferred electronic characteristics for the aryl-boronate units, and suggests that a new generation of receptors containing very electron-poor aryl-boronic acids could lead to a significant improvement of binding affinities. In the experiment, the researchers used many compounds, for example, 2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1Synthetic Route of C12H16BBrO2).

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Synthetic Route of C12H16BBrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Uddin, Jamal Md. et al. published their research in Inorganica Chimica Acta in 2012 | CAS: 166821-88-1

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Formula: C12H16BBrO2

Photoinduced electron transfer quenching and sugar effects on the electrostatic interaction between an anionic Ru(II) complex and cationic bipyridinium derivatives functionalized with boronic acids was written by Uddin, Jamal Md.;DiCesare, Nicolas;Lakowicz, Joseph R.. And the article was included in Inorganica Chimica Acta in 2012.Formula: C12H16BBrO2 This article mentions the following:

The photoinduced electron transfer quenching of an anionic ruthenium(II) metal-ligand-complex (Ru(dpp(SO3Na)))2(mcbpy)Cl2 by two boronic acid functionalized benzyl viologen (BV2+) derivatives has been investigated as well as their response to sugar. The electrostatic interaction between these two charge species lead to the formation of static quenching which is removed in presence of sugar due to the formation of a neutral zwitterionic quencher. Spectral data, quenching parameters and sugar titration curves are presented and discussed in term of future developments of optical sensors for sugar. In the experiment, the researchers used many compounds, for example, 2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1Formula: C12H16BBrO2).

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Formula: C12H16BBrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Wang, Kai et al. published their research in ACS Sensors in 2021 | CAS: 166821-88-1

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.HPLC of Formula: 166821-88-1

Synthesis of Diboronic Acid-Based Fluorescent Probes for the Sensitive Detection of Glucose in Aqueous Media and Biological Matrices was written by Wang, Kai;Zhang, Ruixiao;Yue, Xinmin;Zhou, Zheng;Bai, Lihuan;Tong, Yue;Wang, Bei;Gu, Dening;Wang, Shuo;Qiao, Yanqi;Liu, Qian;Xue, Xue;Yin, Yongmei;Xi, Rimo;Meng, Meng. And the article was included in ACS Sensors in 2021.HPLC of Formula: 166821-88-1 This article mentions the following:

Reliable and accurate glucose detection in biol. samples is of great importance in clin. diagnosis and medical research. Chem. probes are advantageous in simple operation and flexible design, especially for the development of fluorescent probes. Anthracene-based diboronic acid (P-DBA) has shown potential in glucose probing because of its high sensitivity. However, poor solubility limits its applications in aqueous media. In this work, we systemically modify P-DBA by introducing fluoro (F-), chloro (Cl-), methoxyl (MeO-), or cyano (CN-) substituents. Among these probes, the cyano-substituted probe (CN-DBA) displays the highest glucose-binding constant (6489.5 M-1, 33% MeOH). More importantly, it shows good water solubility in the aqueous solution (0.5% MeOH), with ultrasensitive recognition with glucose (LOD = 1.51 μM) and robust sensing from pH 6.0 to 9.0. Based on these features, the CN-DBA is finally applied to detect glucose in cell lysates and plasma, with satisfactory recovery and precision. These results demonstrate that CN-DBA could serve as an accurate, sensitive fluorescent probe for glucose assays in biol. samples. In the experiment, the researchers used many compounds, for example, 2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1HPLC of Formula: 166821-88-1).

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.HPLC of Formula: 166821-88-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Wang, Wei et al. published their research in Organic Letters in 1999 | CAS: 166821-88-1

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon–bromine bond is electrophilic, i.e. alkyl bromides are alkylating agents. Commercially available organobromine pharmaceuticals include the vasodilator nicergoline, the sedative brotizolam, the anticancer agent pipobroman, and the antiseptic merbromin. Product Details of 166821-88-1

Building fluorescent sensors by template polymerization: the preparation of a fluorescent sensor for D-fructose was written by Wang, Wei;Gao, Shouhai;Wang, Binghe. And the article was included in Organic Letters in 1999.Product Details of 166821-88-1 This article mentions the following:

The application of mol. imprinting in making fluorescent sensors was hampered by the lack of suitable fluorescent tags, which would respond to the binding event with significant fluorescence intensity changes. The authors have designed and synthesized a fluorescent monomer which allows for the preparation of fluorescent sensors of cis diols using mol. imprinting methods. This monomer was used for the preparation of sensitive fluorescent sensors for D-fructose. In the experiment, the researchers used many compounds, for example, 2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1Product Details of 166821-88-1).

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon–bromine bond is electrophilic, i.e. alkyl bromides are alkylating agents. Commercially available organobromine pharmaceuticals include the vasodilator nicergoline, the sedative brotizolam, the anticancer agent pipobroman, and the antiseptic merbromin. Product Details of 166821-88-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary