Singh, Pooja S. team published research in Journal of Photochemistry and Photobiology, A: Chemistry in 2021 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Recommanded Product: 4-Bromobenzene-1,2-diamine

Organic compounds having carbon bonded to bromine are called organic bromides. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Recommanded Product: 4-Bromobenzene-1,2-diamine.

Singh, Pooja S.;Badani, Purav M.;Kamble, Rajesh M. research published 《 Blue-orange emitting carbazole based donor-acceptor derivatives: Synthesis and studies of modulating acceptor unit on opto-electrochemical and theoretical properties》, the research content is summarized as follows. In order to demonstrate an effect of varying acceptor unit on optoelectronic properties of Donor-Acceptor (D-A) assembly, we herein designed and synthesized C-N coupled, carbazole based dyes 1-8 by employing Buchwald-Hartwig coupling amination reaction and fully characterized by spectroscopic methods. Presence of intramol. charge transfer (ICT) transitions (λmax = 403-467 nm) in absorption spectra of all dyes reminiscent D-A assembly in it and emit in blue-yellow region (λemm = 467-565 nm) in solution state with marked pos. solvatochromism. The photophys. studies of some of the dyes in different THF/water mixtures revealed aggregation-induced emission (AIE) feature with the nanoparticles formation, as confirmed by dynamic light scattering (DLS) technique. The HOMO (-5.42 to -5.74 eV) and LUMO (-3.03 to -3.50 eV) energy level of these mols. measured by cyclic voltammetry suggest electron transporting property in it. Further, DFT/TDDFT calculation of dyes, indicate quite comparable theor. and exptl. photophys. and electrochem. data. Moreover, calculated singlet (S1) and triplet (T1) excitation energy levels by DFT/B3LYP/6-311 G+(d,p) shows small ΔEST value for some dyes and hence called as TADF emitters. Thus obtained all optoelectrochem. properties of dyes propose its potential use in optoelectronic devices and in biosensing.

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Recommanded Product: 4-Bromobenzene-1,2-diamine

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Raja, Dineshkumar team published research in Chemistry – An Asian Journal in 2021 | 1575-37-7

Recommanded Product: 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Recommanded Product: 4-Bromobenzene-1,2-diamine.

Raja, Dineshkumar;Philips, Abigail;Sundaramurthy, Devikala;Chandru Senadi, Gopal research published 《 Sustainable Synthesis of 2-Hydroxymethylbenzimidazoles using D-Fructose as a C2 Synthon》, the research content is summarized as follows. D-fructose, a biomass-derived carbohydrate had been identified as an environmentally benign C2 synthon in the preparation of synthetically useful 2-hydroxymethylbenzimidazole derivatives I [R = H, 5-F, 5,6-di-Cl, etc.; R1 = H, (CH2)5CH3, CH2CH=CH2, CH2CCH, Ph, Bn, etc.] by coupling with 1,2-phenylenediamines. Proof of concept was established by synthesizing 23 examples using BF3.OEt2 (20 mol%), TBHP (5.5 M, decane) (1.0 equivalent) in CH3CN at 90°C for 1 h. The pivotal features of this method included metal-free conditions, short time, good functional group tolerance, gram scale feasibility and the synthesis of benzimidazole fused 1,4-oxazine. Control studies with conventional C2 synthons did not produce the desired product, thus suggesting a new reaction pathway from D-fructose.

Recommanded Product: 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Peerzade, Nargisbano A. team published research in Polycyclic Aromatic Compounds in | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., SDS of cas: 1575-37-7

Organic compounds having carbon bonded to bromine are called organic bromides. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. SDS of cas: 1575-37-7.

Peerzade, Nargisbano A.;Jadhav, Shravan Y.;Varpe, Bhushan D.;Kulkarni, Amol A.;Bhosale, Raghunath B. research published 《 Green Synthesis, Molecular Docking, In Silico ADME and Biological Evaluation of Methoxy Substituted 1,5-Benzodiazepines as Potential Antioxidant, Anti-Inflammatory, and Antidiabetic Agents》, the research content is summarized as follows. Present work involves the green and environmentally benign synthesis of 1,5-benzodiazepines using iodine as a catalyst and PEG-400 as a green solvent at room temperature that gives an excellent yield of products. All the synthesized compounds were screened for their anti-inflammatory, antioxidant, and antidiabetic activity. All the synthesized compounds showed excellent antioxidant activity against DPPH and H2O2 radicals as compared to standard ascorbic acid and even more than standard for SOR and NO radicals. Compound I showed the highest % anti-inflammatory activity i.e., among the series that was comparable to standard diclofenac sodium whereas compound II showed the highest antidiabetic activity i.e., which was found potent as compared to standard acarbose.

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., SDS of cas: 1575-37-7

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Ouyang, Mi team published research in Journal of Polymer Science (Hoboken, NJ, United States) in 2022 | 1575-37-7

Recommanded Product: 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Recommanded Product: 4-Bromobenzene-1,2-diamine.

Ouyang, Mi;Dai, Dacheng;Hu, Xuming;Li, Yuwen;Chen, Zhangxin;Tao, Bowen;Zhang, Lina;Li, Weijun;Dong, Yujie;Bai, Ru;Lv, Xiaojing;Zhang, Cheng research published 《 In-situ preparation and electrochromic properties of TiO2 / PTPA-HTAN core-shell nanocomposite film》, the research content is summarized as follows. A new star-shaped structure conjugated microporous polymers, poly (2,8,14-tri[4-diphenyl-benzene]-hexaazatrinaphthylene) (PTPA-HATN), was designed and in-situ electrochem. polymerized on the surfaces of FTO electrodes with a directional alignment TiO2 nanorod array to obtain TiO2/PTPA-HATN core-shell nanocomposite films. Compared with the PTPA-HATN film, the TiO2/PTPA-HATN composite film exhibits higher optical contrast and faster response time, with contrast of 57% at 783 nm, coloring time of 3.62 s and discoloring time of 2.55 s (43%, 4.63 s and 4.77 s for PTPA-HATN film, resp.). After 400 cycles, the contrast of nanocomposite film decreased by 28%, while the PTPA-HATN film basically lost its electrochromic properties. A simple three-layer EC prototype device based on TiO2/PTPA-HATN nanocomposite film constructed with hydrogel electrolyte clearly shows color changes at different voltages. On the one hand, the formation of core-shell porous nanostructure of TiO2/PTPA-HATN composite film provides a larger ion doping/de-doping interface, shortening the average diffusion length of ions. On the other hand, the large indented polymer-nanorods contact interface makes it difficult for the polymer to detach from the electrode, thus significantly improving the cyclic stability of the composite film.

Recommanded Product: 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Niu, Kaikai team published research in ACS Sustainable Chemistry & Engineering in 2021 | 1575-37-7

HPLC of Formula: 1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. HPLC of Formula: 1575-37-7.

Niu, Kaikai;Zhou, Pan;Ding, Ling;Hao, Yanke;Liu, Yuxiu;Song, Hongjian;Wang, Qingmin research published 《 Photoelectrochemical Decarboxylative C-H Alkylation of Quinoxalin-2(1H)-ones》, the research content is summarized as follows. Herein, a protocol for the photoelectrochem. decarboxylative C-H alkylation of quinoxalin-2(1H)-ones with good reactivity and selectivity is reported. This protocol involves the use of iron, an earth-abundant metal, to catalyze decarboxylation via ligand-to-metal charge transfer. Furthermore, the reactions can be carried out with a 3 V battery as a power supply, revealing the remarkable simplicity and flexibility of this photoelectrochem. protocol. It offers a new paradigm for a convenient, green synthesis of valuable compounds from versatile carboxylic acid building blocks.

HPLC of Formula: 1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Niu, Kaikai team published research in Green Chemistry in 2021 | 1575-37-7

Name: 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Name: 4-Bromobenzene-1,2-diamine.

Niu, Kaikai;Ding, Ling;Zhou, Pan;Hao, Yanke;Liu, Yuxiu;Song, Hongjian;Wang, Qingmin research published 《 Electro-oxidative C-H azolation of quinoxalin-2(1H)-ones》, the research content is summarized as follows. A practical, general protocol for direct C-H amination reactions of quinoxalin-2(1H)-ones with azoles by electro-oxidative cross-coupling has been developed. These mild reactions proceed under metal-, oxidant-, and reagent-free conditions to provide synthetically useful azolated quinoxalin-2(1H)-ones. Furthermore, the reactions can be carried out with a pencil lead as an electrode and a 3 V battery as a power source, revealing the remarkable flexibility of this protocol.

Name: 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Ohira, Kazuki team published research in Materials Chemistry Frontiers in 2021 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., HPLC of Formula: 1575-37-7

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Organobromine compounds have fallen under increased scrutiny for their environmental impact., HPLC of Formula: 1575-37-7.

Ohira, Kazuki;Imato, Keiichi;Ooyama, Yousuke research published 《 Development of phenazine-2,3-diol-based photosensitizers: effect of formyl groups on singlet oxygen generation》, the research content is summarized as follows. Phenazine-2,3-diol derivatives KO-0-3, which have zero to three formyl groups, resp., have been developed as photosensitizers (PSs) possessing the ability to generate singlet oxygen (1O2). The photoabsorption bands of KO-0-3 are significantly red-shifted compared to those of phenazine-2,3-MOM (methoxymethyl) derivatives 5-8, whose hydroxy and formyl groups are protected, and have onsets at around 600-650 nm. Furthermore, the fluorescence quantum yields (Φfl) of KO-0-3 (Φfl = 0.024-0.097) are lower than those of 5-8 (Φfl = 0.34-0.46) in solution To gain insight into the 1O2 generation properties of KO-0-3, we evaluated the 1O2 quantum yields (ΦΔ) and rate constants (kobs), and demonstrated that KO-1-3 possess a higher ability to generate 1O2 under visible light irradiation than those of 5-8. Moreover, it was found that the ΦΔ values of KO-0-3 increase in the order of KO-0 (0.036) < KO-1 (0.22) < KO-2 (0.33) < KO-3 (0.41) with increasing number of formyl groups. This result indicates that formyl groups facilitate the intersystem crossing (ISC) from the lowest singlet excited states of the PSs (S1) to the triplet excited states (Tn) according to El-Sayed′s rule. Consequently, this work provides useful knowledge in mol. design of efficient phenazine-2,3-diol-based PSs for photodynamic therapy (PDT).

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., HPLC of Formula: 1575-37-7

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Nayek, Nayana team published research in New Journal of Chemistry in 2022 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Quality Control of 1575-37-7

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Quality Control of 1575-37-7.

Nayek, Nayana;Karmakar, Pintu;Mandal, Mullicka;Karmakar, Indrajit;Brahmachari, Goutam research published 《 Photochemical and electrochemical regioselective cross-dehydrogenative C(sp2)-H sulfenylation and selenylation of substituted benzo[a]phenazin-5-ols》, the research content is summarized as follows. A dual synthetic strategy based on visible-light (white LEDs/direct sunlight) irradiation and electrosynthesis has been explored for the regioselective cross-dehydrogenative C(sp2)-H sulfenylation and selenylation of substituted benzo[a]phenazin-5-ols in an oxygen atm. under mild reaction conditions. The photochem. process does not require any external photoredox catalysts. Photocatalytic application of in situ generated deprotonated species of benzo[a]phenazin-5-ol mols. has also been accomplished. This is the first report on the synthesis of functionalized phenazine derivatives

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Quality Control of 1575-37-7

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Nie, Shenyou team published research in European Journal of Medicinal Chemistry in 2021 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Computed Properties of 1575-37-7

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Computed Properties of 1575-37-7.

Nie, Shenyou;Zhao, Jidong;Wu, Xiaowei;Yao, Yuan;Wu, Fangrui;Lin, Yi-Lun;Li, Xin;Kneubehl, Alexander R.;Vogt, Megan B.;Rico-Hesse, Rebecca;Song, Yongcheng research published 《 Synthesis, structure-activity relationship and antiviral activity of indole-containing inhibitors of Flavivirus NS2B-NS3 protease》, the research content is summarized as follows. Zika virus belongs to the Flavivirus family of RNA viruses, which include other important human pathogens such as dengue and West Nile virus. There are no approved antiviral drugs for these viruses. The highly conserved NS2B-NS3 protease of Flavivirus is essential for the replication of these viruses and it is therefore a drug target. Compound screen followed by medicinal chem. optimization yielded a novel series of 2,6-disubstituted indole compounds that are potent inhibitors of Zika virus protease (ZVpro) with IC50 values as low as 320 nM. The structure-activity relationships of these and related compounds are discussed. Enzyme kinetics studies show the inhibitor 66 most likely exhibited a non-competitive mode of inhibition. In addition, this series of ZVpro inhibitors also inhibit the NS2B-NS3 protease of dengue and West Nile virus with reduced potencies. The most potent compounds 66 and 67 strongly inhibited Zika virus replication in cells with EC68 values of 1-3 μM. These compounds are novel pharmacol. leads for further drug development targeting Zika virus.

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Computed Properties of 1575-37-7

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Min, Qingwang team published research in Catalysis Letters in 2022 | 1575-37-7

Electric Literature of 1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine, Electric Literature of 1575-37-7

Min, Qingwang;Miao, Penghua;Liu, Jinghan;Ma, Jianjun;Qi, Meijuan;Shamsa, Farzaneh research published 《 SBA-15 Supported Dendritic ILs as a Green Catalysts for Synthesis of 2-Imidazolidinone from Ethylenediamine and Carbon Dioxide》, the research content is summarized as follows. In this work, a simple and facile approach is conducted for preparing many new SBA-15 supported dendritic imidazolium ILs heterogeneous catalysts SBA-15/IL(1-3) having high ionic d. from SBA-15. SBA-15/IL(3) as a green heterogeneous catalyst can be used for synthesis of 2-imidazolidinone from ethylenediamine and carbon dioxide and considering solvent-free condition. SBA-15/IL(3) showed to have the highest catalytic activity besides a pos. dendritic influence on the yields of the synthesis of 2-imidazolidinone in the presence of CO2 is seen because of existing the high-d. peripheral zwitterionic ionic liquid functional groups on the biobased SBA-15/IL(3) catalyst surfaces.

Electric Literature of 1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary