Yuan, Feng team published research in International Journal of Biological Macromolecules in 2022 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Safety of 4-Bromobenzene-1,2-diamine

Organic compounds having carbon bonded to bromine are called organic bromides. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Safety of 4-Bromobenzene-1,2-diamine.

Yuan, Feng;Liu, Xiaohua;Tan, Lifeng research published 《 Binding properties of ruthenium(II) complexes [Ru(phen)2(7-R-dppz)]2+ (R = methyl or bromine) toward poly(U)•poly(A) RNA duplex》, the research content is summarized as follows. Two Ru(II) complexes containing different substituents, [Ru(phen)2(7-CH3-dppz)]2+ (Ru1) and [Ru(phen)2(7-Br-dppz)]2+ (Ru2), have been synthesized in this study. The binding properties of Ru1 and Ru2 with the duplex RNA poly(U)•poly(A) (where “•” denotes the Watson – Crick base pairing) have been researched by biophys. techniques and viscosity measurements. Anal. of spectral titrations and viscosity measurements indicate that Ru1 and Ru2 bind to the duplex via intercalative, and the binding affinity of Ru1 with the duplex is remarkably higher than that of Ru2. Furthermore, fluorescence emission spectra demonstrates that although complexes Ru1 and Ru2 can act as mol. “light switches” for the duplex RNA, alters in fluorescence emission of Ru1 and Ru2 are prominent differences, and the effectiveness of Ru1 is more remarkable compared with that of Ru2. The melting experiments suggest that the duplex RNA stabilizing effects of Ru1 and Ru2 differ from each other, among them, complex Ru1 can obviously enhance the stability of the duplex RNA, while Ru2 has only a slightly stabilizing effect for the duplex RNA, indicating that Ru1 preferentially binds to RNA duplex over Ru2. The obtained results indicate that subtle modifications of the intercalative ligand of Ru(II) polypyridyl complex with either Me or bromide group have a significant effect on the duplex-binding discrimination.

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Safety of 4-Bromobenzene-1,2-diamine

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Ye, Zecheng team published research in ACS Catalysis in 2021 | 1575-37-7

COA of Formula: C6H7BrN2, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Organobromine compounds have fallen under increased scrutiny for their environmental impact., COA of Formula: C6H7BrN2.

Ye, Zecheng;Chen, Jinzhu research published 《 Sulfonate-Grafted Metal-Organic Frameworks for Reductive Functionalization of CO2 to Benzimidazoles and N-Formamides》, the research content is summarized as follows. Metal-organic frameworks (MOFs) with inner salt of 3-(pyridinylium)-1-propanesulfonate (PS) as the organic linkage were developed as catalysts (PS/MOFs) for reductive functionalization of carbon dioxide (CO2) to benzimidazoles and N-formamides. The pendant -SO3 anion in the PS/MOFs acted as an organocatalytic active site for reductive cyclization of CO2 with 1,2-phenylenediamine to afford 1H-benzo[d]imidazole. A linear correlation was observed between the catalytic performance (in terms of turnover frequencies) and the sp. surface area of PS/MOFs at a low conversion level of 1,2-phenylenediamine. The authors’ theor. study revealed significantly reduced energy barriers from 2.03 eV under catalyst-free conditions to 0.97 eV in the presence of the catalyst. The developed PS/MOFs can efficiently promote a broad range of benzimidazoles in 88-99% yields through reductive cyclization. Moreover, the PS/MOFs can readily catalyze N-formylation of various monoamines with CO2 as the carbonyl source for quant. syntheses of N-formamides. The research thus highlights MOF-based catalysts for organocatalytic transformation of CO2 into high value-added chems.

COA of Formula: C6H7BrN2, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Ye, Zhi-Peng team published research in Journal of Organic Chemistry in 2021 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Reference of 1575-37-7

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Reference of 1575-37-7.

Ye, Zhi-Peng;Liu, Fang;Duan, Xin-Yu;Gao, Jie;Guan, Jian-Ping;Xiao, Jun-An;Xiang, Hao-Yue;Chen, Kai;Yang, Hua research published 《 Visible-Light-Promoted Radical Relay Cyclization/C-C Bond Formation of N-Allylbromodifluoroacetamides with Quinoxalin-2(1H)-ones》, the research content is summarized as follows. A visible-light-promoted radical relay of N-allylbromodifluoroacetamide with quinoxalin-2(1H)-ones were developed, in which 5-exo-trig cyclization and C-C bond formation was involved. This above protocol was performed under mild conditions to facilely offer a variety of hybrid mols. bearing both quinoxalin-2(1H)-one and 3,3-difluoro-γ-lactam motifs. These prepared novel skeletons was expanded the accessible chem. space for structurally complex heterocycles with potential biol. activities.

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Reference of 1575-37-7

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Yan, Jianwei team published research in Journal of Organic Chemistry in 2022 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Reference of 1575-37-7

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Reference of 1575-37-7.

Yan, Jianwei;Zheng, Linxia;Wang, Jiangfei;Liu, Xiaomin;Hu, Youhong research published 《 Indoles Oxidative Ring-Opening/Cyclization Cascade with the 1,2-Diaminoarenes: Direct Synthesis of 2-Aryl-3-(2-aminoaryl)quinoxalines》, the research content is summarized as follows. A mild oxidative sequential tandem reaction was developed to rapidly generate 2-aryl-3-(2-aminoaryl)quinoxalines. This method exploited 2-substituted indoles as substrate to form quinoxalines in a one-pot reaction. The key to this tandem reaction was the formation of 3-iodoindoles, which underwent Kornblum-type oxidation with DMSO to generate active imine 2-substitued 3H-indol-3-ones. The active imines were captured in situ by 1,2-diaminobenzenes to construct diverse quinoxalines. The transformation can be accomplished at room temperature with excellent functional group tolerance.

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Reference of 1575-37-7

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Yan, Liuqing team published research in Chemical Research in Chinese Universities in 2021 | 1575-37-7

Quality Control of 1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Quality Control of 1575-37-7.

Yan, Liuqing;Fu, Jiaxu;Li, Shuang;Zhang, Jinlong;Wang, Shuang;Gu, Qiang;Zhang, Yumin;Lin, Feng research published 《 Microwave-assisted Synthesis and In vitro Bioactivity Evaluation of Benzimidazoles Bearing Phenolic Hydroxyl》, the research content is summarized as follows. An efficient and facile method was introduced for the synthesis of benzimidazoles in this paper. The optimum reaction conditions were determined A series of benzimidazoles bearing phenolic hydroxyl were synthesized in moderate to excellent yields starting from different substituted hydroxy benzaldehyde and 4-position substituted o-phenylenediamine via nu-cleophilic addition in the presence of catalyst Na2S2O5 under microwave irradiation Herein, effects of the catalyst, molar ratio of reactants, reaction temperature and solvent were investigated. The optimal reaction condition was determined The effect of DMF and EtOH solvent on the reaction was compared. Further, the bacteriostatic activities of the synthesized compounds were evaluated with ciprofloxacin and itraconazole as a pos. control, resp. Few compounds exhibited some antibacterial activity. The lowest MIC of antibacterial activity of compound I was 32μg/mL. Meanwhile, the luminescence property of compound I was studied. The antibacterial activity of compound I, along with their good fluorescence performance highlighted the potential of these compounds as lead structures and owned fluorescence trace for further study towards the development of novel drugs and functional mechanisms in living organisms.

Quality Control of 1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Yan, Qiuli team published research in Organic Chemistry Frontiers in 2022 | 1575-37-7

Safety of 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 1575-37-7, formula is C6H7BrN2, The most pervasive is the naturally produced bromomethane. Safety of 4-Bromobenzene-1,2-diamine

Yan, Qiuli;Cui, Wenwen;Li, Junxin;Xu, Guiyun;Song, Xiuyan;Lv, Jian;Yang, Daoshan research published 《 C-H benzylation of quinoxalin-2(1H)-ones via visible-light riboflavin photocatalysis》, the research content is summarized as follows. An efficient visible-light promoted riboflavin-catalyzed direct benzylation of substituted quinoxalin-2(1H)-ones for the synthesis of various C3-benzylated quinoxalin-2(1H)-one derivatives was developed under mild conditions. The present method used readily available benzyl bromides as alkylating reagents and environmentally friendly and inexpensive riboflavin (vitamin B2) as a green organic photocatalyst. This method opened a new avenue towards C3-benzylated quinoxalin-2(1H)-ones, thus promised their broad applications in pharmaceutical chem. and synthetic chem.

Safety of 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Yang, Chun team published research in Zeitschrift fuer Naturforschung, B: A Journal of Chemical Sciences in 2021 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Synthetic Route of 1575-37-7

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Organic compounds having carbon bonded to bromine are called organic bromides. Synthetic Route of 1575-37-7.

Yang, Chun;Song, Lili;Miao, Zhong;Jiang, Lingyun;Li, Ting;Zhi, Xiaoyan;Hao, Xiaojuan;Cao, Hui research published 《 Discovery of novel obovatol-based phenazine analogs as potential antifungal agents: synthesis and biological evaluation in vitro》, the research content is summarized as follows. To explore candidate fungicides from plant secondary metabolites, 16 novel obovatol-type phenazine derivatives were semi-synthesized from obovatol isolated from the leaves of Magnolia obovata Thunb. The antifungal activity of synthesized compounds was investigated in vitro against four phytopathogenic fungi using the spore germination method. The bioassay results showed that eight derivatives exhibited better antifungal activity against Fusarium solani than two pos. controls, especially compounds 3-allyl-1-(4-allylphenoxy)-7,8-difluorophenazine (IC50 = 64.61μg mL-1) and 3-allyl-1-(4-allylphenoxy)-8-chlorophenazine (IC50 = 79.97μg mL-1) showed pronounced inhibition of spore germination activity against F. solani. They could be used as lead compounds for further structural optimization. Addnl., the preliminary structure-activity relationships (SARs) illustrated that the introduction of a benzene ring monosubstituted with electron-withdrawing groups into the obovatol scaffold could lead to potentially antifungal compounds

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Synthetic Route of 1575-37-7

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Yang, Gao-feng team published research in Journal of Organic Chemistry in 2021 | 1575-37-7

Reference of 1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Reference of 1575-37-7.

Yang, Gao-feng;Li, Guang-xun;Huang, Jin;Fu, Ding-qiang;Nie, Xiao-kang;Cui, Xin;Zhao, Jin-zhong;Tang, Zhuo research published 《 Regioselective, Diastereoselective, and Enantioselective One-Pot Tandem Reaction Based on an in Situ Formed Reductant: Preparation of 2,3-Disubstituted 1,5-Benzodiazepine》, the research content is summarized as follows. The 1,5-benzodiazepines are important skeletons frequently contained in medicinal chem. Herein, we described an unexpected tandem cyclization/transfer hydrogenation reaction for obtaining chiral 2,3-disubstituted 1,5-benzodiazepines. The enolizable aryl aldehydes were chosen as substrates to react with sym. and unsym. o-phenylenediamines. The unforeseen tandem reaction occurred among many possible latent side reactions under chiral phosphoric acid catalysis and affords the corresponding products in moderate yields and regioselectivities, good diastereoselectivities, and enantiomeric ratio (up to 99:1).

Reference of 1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Yang, Guang team published research in Applied Organometallic Chemistry in 2022 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Product Details of C6H7BrN2

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Product Details of C6H7BrN2.

Yang, Guang;Wang, Shoucai;Nie, Hongsheng;Xiong, Zhicheng;Li, Xuan;Ji, Fanghua;Jiang, Guangbin research published 《 An efficient transition metal-free difunctionalization of alkenes in water for the green preparation of sulfone compounds》, the research content is summarized as follows. A direct difunctionalization method of alkenes with quinoxalin-2(1H)-ones and sodium sulfonates toward sulfone derivatives I [R1 = Et, prop-2-ynyl, (CH2)3HCCH2, p-tolylmethyl, (4-tert-butylphenyl)methyl; R2 = Ph, 2-ClC6H4, Bn, etc.; R3 = H, 6-F, 6-Br, 6,7-di-Me, 6,7-di-Cl; R4 = Ph, 4-MeC6H4, 2-naphthyl, etc.; R5 = H; R2R5 = (CH2)3] had been developed under environmentally friendly conditions. This strategy represented an efficient and practical difunctionalization of olefins using water/aqueous media as a sustainable solvent. In addition, this transition metal-free reaction was high yield, and operationally simple, and in particular, proceeds under mild conditions to afford desired sulfones with high functional group compatibility.

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Product Details of C6H7BrN2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Yang, Guang team published research in Organic Letters in 2022 | 1575-37-7

Product Details of C6H7BrN2, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Product Details of C6H7BrN2.

Yang, Guang;Xiong, Zhicheng;Nie, Hongsheng;He, Meiqin;Feng, Qiong;Li, Xuan;Huang, Huabin;Wang, Shoucai;Ji, Fanghua;Jiang, Guangbin research published 《 Copper-Catalyzed Divergent C-H Functionalization Reaction of Quinoxalin-2(1H)-ones and Alkynes Controlled by N1-Substituents for the Synthesis of (Z)-Enaminones and Furo[2,3-b]quinoxalines》, the research content is summarized as follows. With control by N1-substituents, switchable divergent C-H functionalization reaction of quinoxalin-2(1H)-ones was achieved for the synthesis of (Z)-enaminones I (R1 = Et, H2C:CHCH2, cyclopropylmethyl, 4-O2NC6H4CH2, etc.; R2 = H, 7-MeO, 6,7-Cl2, etc.; R3 = cyclopropyl, Ph, 2-BrC6H4, 2-thienyl, etc.) and furo[2,3-b]quinoxalines II (R4 = H, 6-F3C, 6-F, 8-Me, 6,7-Me2, etc.; R5 = Ph, 3-BrC6H4, 4-EtOC6H4, etc.) using the combination of copper catalyst and oxidant. This new protocol features mild reaction conditions, readily available materials and broad substrate scope. Gram-scale and mechanistic studies were also investigated. Furthermore, some of the products exhibited excellent antitumor activity against A549, HepG-2, MCF-7 and Hela cells, which were tested by MTT assay.

Product Details of C6H7BrN2, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary