Zhou, Quan’s team published research in Journal of Organic Chemistry in 2010 | CAS: 116529-61-4

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Due to the reactivity of bromide, they are used as potential precursors or important intermediates in organic synthesis. Category: bromides-buliding-blocks

Zhou, Quan; Snider, Barry B. published their research in Journal of Organic Chemistry on December 3 ,2010. The article was titled 《Synthesis of Hexacyclic Parnafungin A and C Models》.Category: bromides-buliding-blocks The article contains the following contents:

Unstable hexacyclic parnafungin A and C models isoxazolophenanthridones I (R = R1 = H; R = MeO, R1 = H; R = H, R1 = MeO) and benzopyranoisoxazolophenanthridinediones II (R2 = H, Me) were prepared using Suzuki coupling reactions, reductive cyclizations of o-nitrobenzoates to benzisoxazolones and the cyclocondensations of hydroxymethylarylbenzisoxazolones to fused isoxazoloquinolines as key steps. Iodoxanthones III (R2 = H, Me) were prepared in four or five steps and 33-50% overall yields from Me salicylate and either 5-Me or 5-(hydroxymethyl)resorcinol; Suzuki-Miyaura coupling of III (R2 = H, Me) with an excess of readily available 3-carbomethoxy-2-nitrophenyl pinacolboronate (prepared in three steps from 3-methyl-2-nitro-1-bromobenzene) afforded the hindered highly functionalized (methoxycarbonyl)nitrophenyl-substituted xanthones in 53-58% yields. Zinc reduction of the (methoxycarbonyl)nitrophenyl-substituted xanthones gave benzisoxazolinones that were treated with MsCl and then with base to generate the unstable hexacyclic parnafungin A and C models II (R = H) and II (R = Me) in 13% overall yield for 8 steps and in 8% overall yield for 9 steps, resp. Analogously to the parnafungins, II (R2 = Me) decomposes to a phenanthridine with a half-life of 2 d in CDCl3. The experimental part of the paper was very detailed, including the reaction process of 3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4Category: bromides-buliding-blocks)

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Due to the reactivity of bromide, they are used as potential precursors or important intermediates in organic synthesis. Category: bromides-buliding-blocks

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Fatemi, M. H.’s team published research in Journal of Chromatography A in 2004 | CAS: 116529-61-4

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides.Safety of 3-Bromo-2-nitrobenzoic acid

Safety of 3-Bromo-2-nitrobenzoic acidOn June 4, 2004, Fatemi, M. H. published an article in Journal of Chromatography A. The article was 《Prediction of the electrophoretic mobilities of some carboxylic acids from theoretically derived descriptors》. The article mentions the following:

A 4-4-1 artificial neural network was constructed and trained for the prediction of the electrophoretic mobilities of some aliphatic and aromatic carboxylic acids based on quant. structure-property relations. The inputs of this network are theor. derived descriptors that were chosen by the stepwise variables selection techniques. These descriptors are: shape factor, mol. surface area, the maximum value of electron d. on atom in mol., and the sum of at. polarizability. To assess the accuracy and predictability of the proposed model, the cross-validation test was employed. The results obtained showed the ability of developed artificial neural network to prediction of electrophoretic mobilities of aliphatic and carboxylic acids. Also result reveals the superiority of the artificial neural network over the multiple linear regression models. The experimental process involved the reaction of 3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4Safety of 3-Bromo-2-nitrobenzoic acid)

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides.Safety of 3-Bromo-2-nitrobenzoic acid

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Burger, Alfred’s team published research in Journal of Organic Chemistry in 1940 | CAS: 116529-61-4

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Synthetic Route of C7H4BrNO4 Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides.

In 1940,Journal of Organic Chemistry included an article by Burger, Alfred; Avakian, S.. Synthetic Route of C7H4BrNO4. The article was titled 《Some derivatives of homoanisic acid》. The information in the text is summarized as follows:

p-Homoanisic acid (I), m. 86-7°, is prepared in a yield of 53% according to Arndt and Eistert (C. A. 29, 3223.9) by treating 20 g. p-MeOC6H4COCHN2 in 100 cc. dioxane with 150 cc. concentrated NH4OH and 30 cc. 10% AgNO3 solution at 60-70°. The mixture is boiled for 2 h. and the filtered p-homoanisamide, m. 188-9°, is saponified with KOH and I is precipitated on acidification. When 16.6 g. I is added to 30 cc. HSO3Cl at -5°, the mixture kept below 0° for 1 h., then warmed to 40° and kept there for 5 min., 3-chlorosulfonylhomoanisic acid (II), m. 164-5°, crystallized from C6H6, is obtained in 80.6% yield. Reduction of II with Zn dust and H2SO4 gives 3-thio-p-homoanisic acid (III), m. 83-4°, in 83% yield. That chlorosulfonation has taken place in the 3-position is shown by its synthesis from 3-nitro-p-homoanisic acid (IV). IV, m. 132-3°, is prepared in 70% yield by saponification of 3-nitro-4-methoxybenzyl cyanide, m. 87-7.5°, obtained by interaction of MeO(O2N)C6H3CH2Cl and KCN in 45% yield, with 50% H2SO4 in AcOH. IV is also formed when 0.5 g. I is nitrated with 1 cc. concentrated HNO3 in 5 cc. AcOH at 0°. Reduction of IV in the presence of Raney Ni gives 3-aminohomoanisic acid (V), m. 110-11°, in 90% yield. Treatment of V with NaNO2 in H2SO4, at 0° gives homoisovanillic acid, m. 127-8°. Treatment of the diazo compound from 7.24 g. V with a solution prepared by dissolving 12.4 g. Na2S.9H2O and 1.3 g. powd. S in 12 cc. boiling H2O gives on acidification 3,3′-dithiohomoanisic acid, which on reduction with Zn dust in AcOH, gives III in 25% yield. Condensation of 1.24 g. III with 2.46 g. 2-nitro-3-bromobenzoic acid, m. 250-1°, prepared by oxidation of 2-nitro-3-bromotoluene with Cr2O3 in 70% yield, gives 2′-nitro-3′-carboxy-2-methoxydiphenyl sulfide-5-acetic acid (VI), m. 232-4° (decomposition), in 46% yield. Reduction of VI in NH4OH with Fe(OH)2 gives the 2′-amino derivative, m. 222-4°, in 66% yield. In the part of experimental materials, we found many familiar compounds, such as 3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4Synthetic Route of C7H4BrNO4)

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Synthetic Route of C7H4BrNO4 Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Thompson, H. E.’s team published research in Botanical Gazette (Chicago) in 1946 | CAS: 116529-61-4

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.Most of the natural organobromine compounds are produced by marine organisms , and several brominated metabolites with antibacterial , antitumor , antiviral , and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. In contrast, terrestrial plants account only for a few bromine-containing compounds.COA of Formula: C7H4BrNO4

《New growth-regulating compounds. I. Summary of growth-inhibitory activities of some organic compounds as determined by three tests》 was published in Botanical Gazette (Chicago) in 1946. These research results belong to Thompson, H. E.; Swanson, Carl P.; Norman, A. G.. COA of Formula: C7H4BrNO4 The article mentions the following:

cf. Newman, et al. C.A. 41, 3774i. Growth-regulating substances were prepared and subjected to 3 tests. In each a common reference material, (2,4-dichlorophenoxy)acetic acid (I), was employed and the results of any test were expressed as a percentage of the inhibition produced concurrently by I. The primary test, Test A (Corn Germination Test), involved the determination of inhibition of elongation of the primary root of germinating corn. Corn grains were germinated at 27° in Petri dishes containing 20 mL. of an aqueous solution of the compound to be tested at a concentration of 10 p.p.m. After 4 days of growth the length of the primary root of each plant was measured. Inhibition of growth was determined by subtracting the average length of the primary roots of the treated seeds from that of the control seeds, expressed in percentage. In Test B (Kidney-Bean Single-Droplet Water Test) kidney beans were placed in pots containing 1 lb. soil. After 7-10 days each plant was treated with 0.02 mL. of an aqueous solution containing 200 p.p.m. (4 γ) of the compound to be tested and 0.5% of Carbowax 1500. Treatment was applied to the upper surface of one of the primary leaves at a point along the midrib approx. one-eighth in. from the point of attachment of the blade and petiole. On the 10th day after treatment the fresh weight of that portion of each plant above the second node was determined Controls untreated and also treated with I were included in each test. Test C (Kidney-Bean Single-Droplet Oil Test) was essentially the same as Test B but 0.01 mL. of solution was applied containing 5γ in oil of the compound to be tested. Tri-Bu phosphate, at a concentration of 0.2%, was used as a co-solvent for compounds not directly soluble or miscible with oil. The introduction of I could be accomplished only in this way. Close numerical agreement was not necessarily expected between the 3 tests. The degree of inhibition produced by I in Tests B and C at different times of the year was not wholly identical and was affected by rate of growth. Test A was the most reproducible and formed the primary basis for detection of inhibitory activity and was reliable in separating those compounds that possess a high inhibitory activity for most broad-leaved plants from those with little or no activity at the same concentration Satisfactory agreement was found between Tests A and B with discrepancies in the direction of a lower activity by Test B. Variation between replications was greatest in Test C but the results were satisfactory in separating active inhibitors from those with low activity. Compounds showing high activity are promising for use as herbicides. The compounds tested have been classified into groups according to activity and the results under 3 tests reported. The following, as Group I, are compounds possessing 80% or more of the activity of I in Test A: (2-bromo-4-chlorophenoxy)acetic acid; Bu (2,4,5-trichlorophenoxy) acetate; (2-chloro-4-bromophenoxy)acetic acid; NH4 4-chlorocinnamate; α(4-chlorophenoxy)acetamide; (3-chlorophenoxy)acetic acid; 4-isomer; α-(2,4-dichlorophenoxy)acetamide; 2-(2,4-dichlorophenoxyacetamido)-1-butanol; Na 4-(2,4-dichlorophenoxyacetamido)-2,5-dichlorobenzenesulfonate; 2-(2,4-dichlorophenoxyacetamido)-2-ethyl-1,3-propanediol; 2-(2,4-dichlorophenoxyacetamido)-2-(hydroxymethyl)-1,3-propanediol; 2-(2,4-dichlorophenoxyacetamido)-2-methyl-1,3-propanediol; 2-(2,4-dichlorophenoxyacetamido)-1-naphthalenesulfonic acid; 8-(2,4-dichlorophenoxyacetamido)-1-naphthalenesulfonic acid; 8-(2,4-dichlorophenoxyacetamido)-1-naphthol-3,6-disulfonic acid; (3,4-dichlorophenoxy)acetic acid; 2,5-isomer; (2,4-dichlorophenoxy)acetic anhydride; α-(2,4-dichlorophenoxy)-4-sulfoacetanilide; (2,4-dichlorophenoxy)acetohydroxamic acid; (2,4-dichlorophenoxy) acetyl chloride; (2,4-dichlorophenoxyacetyl)guanidine; N-(2,4-dichlorophenoxyacetyl)urea; α-(2,4-dichlorophenoxy)butyric acid; 2-diethylaminoethyl (2,4-dichlorophenoxy)acetate; 2-diethylaminoethyl (2,4,5-trichlorophenoxy)acetate; 2,2-dimethyl-1,3-dioxolan-4-ylmethyl (2-methyl-4-chlorophenoxy)acetate; 1,4-bis(2,4,5-trichlorophenoxyacetamido)benzene; 1,3-isomer; Et (2,4-dichlorophenoxy)-acetate; Et (2-methyl-4-chlorophenoxy) acetate; Et 2-(2-methyl-4-chlorophenoxy) heptanoate; 2-hydroxyethyl (2,4-dichlorophenoxy)acetate; (2-iodo-4-chlorophenoxy)acetic acid; (2-methyl-4-bromophenoxy)acetic acid; (2-methyl-4-chlorophenoxy)acetamide; N-methyl-α-(4-chlorophenoxy)acetamide; 4-(2-methyl-4-chlorophenoxyacetamido)benzenesulfonic acid; 2-(2-methyl-4-chlorophenoxyacetamido)-6,8-naphthalenedisulfonic acid; 2-(2-methyl-4-chlorophenoxyacetamido)-1-naphthalenesulfonic acid; 8-(2-methyl-4-chlorophenoxyacetamido)-1-naphthalenesulfonic acid; 7-(2-methyl-4-chlorophenoxyacetamido)-1-naphthol-3,6-disulfonic acid; (2-methyl-4-chlorophenoxy)acetic acid; (2-methyl-6-chlorophenoxy)acetic acid; (2-methyl4-chlorophenoxy)acetic anhydride; (2-methyl-4-chlorophenoxy)acetyl chloride; (2-methyl-4-fluorophenoxy)acetic acid; N-methyl-α-(2,4,5-trichlorophenoxy)acetamide; 2-nitro-2-methylpropyl (2,4-dichlorophenoxy)acetate; 2-nitro-2-methylpropyl (2-methyl-4-chlorophenoxy)acetate; Ph chloroacetate; Ph (2-methyl-4-chlorophenoxy)acetate; iso-Pr (2-methyl-4-chlorophenoxy)acetate; 2-(2,4,5-trichlorophenoxyacetamido)-2-(hydroxymethyl)-1,3-propanediol; α-(2,4,5-trichlorophenoxy)-N,N-bis(2-hydroxyethyl)acetamide; (2,4,5-trichlorophenoxy)acetic piperidide; α-(2,4,5-trichlorophenoxy)-3-chloroacetanilide; α-(2,4,5-trichlorophenoxy)-2,4-dimethylacetanilide; α-(2,4,5-trichlorophenoxy)-4-ethoxyacetanilide; α-(2,4,5-trichlorophenoxy)-4-methylacetanilide; α-(2,4,5-trichlorophenoxy)-2,4,6-trichloroacetanilide; [3-(trifluoromethyl)phenoxy] acetic acid; N-[tris(hydroxymethyl)methyl]-N-{2-hydroxy-3-[tris(hydroxymethyl)methylamino]-propyl}-α-(2,4-dichlorophenoxy)acetamide-HCl. The following, as Group II, are compounds possessing 50-79% of the activity of I in Test A: 2-aminoethanol bis-[(4-chlorophenoxy)acetate];(4-bromophenoxy)acetic acid; O-(2-carboxymethoxy-3-methyl-5-bromobenzoyl)glycolic acid; O-(2-carboxymethoxy-3-methyl-5-nitrobenzoyl)-glycolic acid; decyl dihydrogen orthophosphate; (2-chloro-4-tert-butylphenoxy)acetic acid; (2-chloro-4-iodophenoxy)acetic acid; 1-chloronaphthylacetic acid (mixture), ammonium salt; 2-(4-chlorophenoxyacetamido)-1-naphthalenesulfonic acid; 4-(4-chlorophenoxyacetamido)-1-naphthalenesulfonic acid; 8-(4-chlorophenoxyacetamido)-1-naphthalenesulfonic acid; 8-(4-chlorophenoxyacetamido)-1-naphthol-3,6-disulfonic acid; α-(4-chlorophenoxy)-N,N-bis(2-hydroxyethyl)acetamide; (4-chlorophenoxy)acetyl chloride; 2-(4-chlorophenoxyacetamido)-2-(hydroxymethyl)-1,3-propanediol; γ-(4-chlorophenoxy)-butyric acid; S-(4-chlorophenyl)thioglycolic acid; 2-butenyl (4-chlorophenoxy)acetate; (2,4-dibromophenoxy)acetic acid; α,β-dibromo-γ-phenylpropionyl chloride; 3,5-dichloro-2-bromobenzoic acid; (2,4-dichloro-5-bromophenoxy)acetic acid; (2,4-dichlorophenoxy)acetic piperidide; 4-(2,4-dichlorophenoxyacetamido)-1-naphthalenesulfonic acid; (2,4-dichlorophenoxy)acetonitrile; N’-(2,4-dichlorophenoxyacetyl)betaine hydrazide hydrochloride; α-(2,4-dichlorophenoxy)-N,N-diethylacetamide; α-(2,4-dichlorophenoxy-N-methylacetamide; NH4 γ-(2,4-dichlorophenoxy)butyrate; 2,4-dichlorophenylglycine; S-(2,5-dichlorophenyl)thioglycolyl chloride; 2,2-dimethyl-1,3-dioxolan-4-ylmethyl (4-chlorophenoxy)-acetate; β-(2,4-dimethylphenoxy)propionic acid; 3,5-dimethylpyrazole; Et 3-hydroxy-2-naphthoate; Et (2-methyl-4,6-dichlorophenoxy) acetate; 2-hydroxy-3-methyl-5-bromobenzoic acid; 2-hydroxy-3-methyl-5-iodobenzoic acid; 2-hydroxyethyl (4-chlorophenoxy)-acetate; N-2-hydroxyethyl-α-(2,4-dichlorophenoxy)acetamide; N-2-hydroxyethyl-α-(2-methyl-4-chlorophenoxy)-acetamide; 2-hydroxyethyl (2-methyl-4-chlorophenoxy)-acetate; 2-hydroxy-3-methylbenzoic acid; 2-hydroxy-5-nitrobenzoic acid; (2-methyl-4-bromo-6-carboxyphenoxy)acetic acid; α-(3-methyl-4-chlorophenoxy)acetamide; Me (4-chlorophenoxy)acetate; (2-methyl-5-chlorophenoxy)acetic acid; (3-methyl-4-chlorophenoxy)-acetic acid; α-(2-methyl-4-chlorophenoxy)-N,N-bis(2-hydroxyethyl)acetamide; (3-methyl-4-chlorophenoxy)-acetyl chloride; Me (2,4-dibromophenoxy)acetate; Me (2,4-dimethylphenoxy) acetate; (2-methylphenoxy)acetyl chloride; Ph (4-chlorophenoxy)acetate; Ph (2,4-dichlorophenoxy)acetate; α-(2-propyl-4-chlorophenoxy)acetamide; α-(2,4,5-trichlorophenoxy) acetanilide; (2,4,5-trichlorophenoxy)acetonitrile; N-(2,4,5-trichlorophenoxyacetyl) bis[tris(hydroxymethyl) methylaminomethyl] carbinol hydrochloride. The following, as Group III, are compounds possessing 30-49% of the activity of I in Test A: 4-aminoazobenzene; 2-(amylamino)ethyl diphenylacetate-HCl; (2-amyl-4-chlorophenoxy)acetic acid; isoamyl (2,4-dimethylphenoxy)acetate; 2-bromoethyl (4-chlorophenoxy)acetate; (2-bromophenyl)sulfamic acid; butylamine mercuric chloride; Bu (3-methylphenoxy)acetate; cacotheline; 1-(4-carboxyphenyl-3-(3-chlorophenyl)urea; chloroacetamide; 4-chlorobenzoyl chloride; (4-chlorophenoxy)acetonitrile; 1-(4-chlorophenoxy)-2,3-epoxypropane; (4-chlorophenyl)acetic acid; N-(4-chlorophenyl)glycine; S-(4-chlorophenyl)thioglycolyl chloride; N-butyl-S-(4-chlorophenyl)thioglycolamide; [2-(cyanomethyl)-4-chlorophenoxy] acetic acid; NH4 N,N-(cyclopentamethylene)dithiocarbamate; 3,5-dibromo-2-aminobenzoic acid; 2,5-dichloroaniline mercuric chloride salt; (2,4-dichloro-5-aminophenoxy)-acetic acid; 2,4-dichlorocinnamic acid; α-(2,4-dichloro-6-methylphenoxy) acetamide; (2,4-dichloro-5-nitrophenoxy)acetic acid; (2,4-dichlorophenoxy)-N,N-bis(2-hydroxyethyl)acetamide; S-(2,5-dichlorophenyl)thioglycolic acid; 1,1-bis(1-hydroxy-2,2,2-trichloroethyl)urea; 3,4-dimethylphenol; (2,4-dimethylphenoxy)acetic acid; 3,4-isomer; (2,4-dimethylphenoxy)acetyl chloride; S-(2,4-dinitrophenyl)thioglycolic acid; N,N-bis [tris(hydroxymethyl)methyl]ethylenediamine-di-HCl; Et [2-(chloromethyl)-4-chlorophenoxy]acetate; (2-ethyl-4-chlorophenoxy)acetic acid; Et S-(4-chlorophenyl)thioglycolate; 2-hydroxy-3-carboxy-5-chlorotoluene; 4-hydroxy-3,5-dibromobenzoic acid; 2-hydroxyethyl 2,4-dichlorophenyl ether; N4-(iodoacetyl)sulfanilamide; 2-methyl-2-butylaminopropyl 4-(hexyloxy)benzoate-HCl; (2-methyl-4-chloro-6-carboxyphenoxy)acetic acid; Me(2-chlorophenoxy)acetate; 1-(2-methyl-4-chlorophenoxy)-2,3-epoxypropane; Me (2,4-dichlorophenoxy)acetate; (2-methylphenoxy)acetic acid; 4-nitrobenzoyl chloride; octyl dihydrogen orthophosphate; 2-isopropylaminoethyl 2-butoxybenzoate-HCl; Pr (2-methyl-4-chlorophenoxy)acetate; iso-Pr phenylcarbamate; Ba 3-pyridinesulfonate; sulfamerazine; 2,3,5-tribromobenzoic acid; 2,3,5-trichlorobenzoic acid; (2,2,2-trichloro-1-hydroxyethyl)urea; (2,4,6-trichlorophenoxy)acetic acid; (2,4,5-trichlorophenoxy)-2-nitroacetanilide; 2,4,6-trichlorophenyl phenylcarbamate; S-(2,4,5-trichlorophenyl)thioglycolamide; 1-[3-(trifluoromethyl)phenoxy]-2,3-epoxypropane; NH4 2,3,5-triiodobenzoate; N-[tris(hydroxymethyl)methyl]-N-{2-hydroxy-3-[tris(hydroxymethyl)methylamino]propyl}-α-(4-chlorophenoxy)acetamide-HCl. The following, as Group IV-A, are compounds showing less than 29% of the activity of I in Test A and 50% or more of the activity of I in either Test B or Test C: α-amino-β-(2,4-dichlorophenoxy)propionamide; α-amino-β-(3-nitro-4-hydroxyphenyl)propionic acid nitrate salt; aminotetrazole; aniline; (benzylsulfonyl)acetic acid; 5-bromo-2-nitrobenzoic acid; 2-bromo-3-nitrobenzoic acid; NH4 2-bromo-3-nitrobenzoate; β-bromopropionic acid; 2-butylaminoethyl 4-butoxybenzoate-HCl; 2-isobutylaminoethyl 4-butoxybenzoate-HCl; 2-butylaminoethyl 4-ethoxybenzoate-HCl; 2-butylaminoethyl 4-methoxybenzoate-HCl; camphor oxime; N4-(carbo-2-chloroethoxy)sulfanilamide; (2-carbomethoxy-4-chlorophenoxy)acetic acid; (2-carboxy-4-chlorophenoxy)acetic acid; (2-carboxy-6-methylphenoxy)acetic acid; (2-carboxyphenoxy)acetic acid; [2-(carboxymethoxy)-3,5-dichlorobenzoyl]glycolic acid; chloroacetic acid; 2-chloroaniline; 3-chloroaniline; 4-chloroaniline; 4-chlorobenzyl mercaptan; 4-chlorobenzenesulfonyl chloride; 4-chlorobenzylisothiourea-HCl; 4-chloromandelic acid; (2-chloro-4-methylphenoxy)acetic acid; 2-chloro-3-nitrobenzoic acid; 2-chloro-5-nitrobenzoic acid; (2-chlorophenoxy)acetic acid; [2-(2-chlorophenyl)phenoxy]acetic acid; 4-chlorothiophenol; diazoaminobenzene; 2,4-dibromophenol; dichloroacetic acid; 2,4-dichloroaniline; 2,5-dichloroaniline; (2,4-dichlorobenzylsulfonyl)acetic acid; 2,4-dichlorobenzoic acid; 2,4-dichlorobenzylisothiourea-HCl; (2,4-dichloro-6-carboxyphenoxy)acetic acid; (2,6-dichloro-4-nitrophenoxy)acetic acid; 2,4-dichlorophenyl phenylcarbamate; (2,5-dichlorophenyl)sulfamic acid; 2,4-dihydroxypyrimidine; 2,4-dimethylphenol; (2,4-dinitrophenyl)acetic acid; N,N’-bis[tris(hydroxymethyl)methyl] hexamethylenediamine-di-HCl; 3-ethoxy-2-naphthoic acid; 2-ethylaminobutyl 4-ethoxybenzoate-HCl; Et carbamate; Et β-methyl-β-(4-chlorophenyl)glycidate; 3-ethyl-4-methylpyridine; Et (2-propyl-4-chlorophenoxy)acetate; (2-fluorophenoxy)acetic acid; 2-hydroxy-3-bromo-5-chlorobenzoic acid; 2-hydroxy-3-methyl-5-nitrobenzoic acid; N-(2-hydroxy-3-chloropropyl)-p-toluidine; 2-hydroxy-3,5-dinitrobenzoic acid; 4-iodobenzoic acid; 2-methoxyphenol; 4-methoxyphenol; 2-methyl-2-amylaminopropyl diphenylacetate-HCl; 2-methyl-5-chlorophenol; 2-methyl-6-chlorophenol; (2-methyl-4-chlorophenoxy)fumaric acid; Me 3-chlorophenylcarbamate; 2-methyl-4,6-dichlorophenol; 2-methyl-2-hexylaminopropyl 4-ethoxybenzoate-HCl; Me (2-methyl-6-chlorophenoxy)acetate; (4-methylphenoxy)acetic acid; Me phenylthiocarbamate; S-(2-methylphenyl)thioglycolic acid; 4-methyl-4-(trichloromethyl)-2,5-cyclohexadien-1-one O-carboxymethyloxime; 2-nitrobutyl phenylcarbamate; 1-phenyl-3-methyl-5-pyrazole; phthalic acid; α-pinene; 2-isopropylaminoethyl 4-butoxybenzoate-HCl; (2-propyl-4-chlorophenoxy)acetic acid; iso-Pr (2,4-dimethylphenoxy)acetate; iso-Pr (2-methyl-6-chlorophenoxy)acetate; 3-propyl-2-naphthoic acid; iso-Pr (2-propyl-4-chlorophenoxyacetate); trichloroacetamide; trichloroacetic acid; trichloroacetyl chloride; 2,4,5-trichlorobenzenesulfonamide; 3,4,5-trihydroxybenzoic acid; N-[tris(hydroxymethyl)methyl]-2,3-dibromopropylamine-HBr; salicylic acid. The following, as Group IV-B, are compounds insufficiently soluble in water for Test A to be performed but exhibiting 50% or more of the activity of I in either Test B or Test C: allyl (4-chlorophenoxy)acetate; allyl (2,4-dichlorophenoxy)acetate; 2-aminonaphthoic acid; amyl (2,4-dichlorophenoxy)acetate; isoamyl (2,4-dichlorophenoxy)acetate; amyl 1-naphthalenecarbamate; bis-(4-chlorophenyl)(trichloromethyl)methane; 1,1′-(bis-2-naphthol)phenylmethane; 2-bromo-3,5-dichlorobenzamide; 2-bromo-3,5-dichlorobenzanilide; 2,2′-dibromo-3,5-dichlorobenzanilide; 2,3′-dibromo-3,5-dichlorobenzanilide; 2,4′-dibromo-3,5-dichlorobenzanilide; 2-bromo-3,3′,5-trichlorobenzanilide; 2-bromo-2′,3,4′,5-tetrachlorobenzanilide; 2-bromo-3,5-dichloro-m-benzotoluidide; 2-bromo-3,5-dichlorobenzoyl chloride; 2-bromoethyl (2,4-dibromophenoxy) acetate; 2-bromoethyl (2,4-dichlorophenoxy) acetate; α-(4-bromophenoxy)acetamide; 1-(3-bromophenyl)-3-(2-chlorophenyl)urea; 1-(3-bromophenyl)-3-(3-chlorophenyl)urea; Bu (2,4-dichlorophenoxy)acetate; iso-Bu (2,4-dichlorophenoxy)acetate; 1-carbethoxy-3-(3-chlorophenyl)urea; 2-chloroethyl (4-chlorophenoxy)acetate; 2-chloroethyl (2,4-dibromophenoxy)acetate; 2-chloroethyl (2,4-dichlorophenoxy)acetate; 2-chloroethyl (2-methyl-4-chlorophenoxy)acetate; 2-chloroethyl 1-naphthalenecarbamate; 2-chloroethyl phenylcarbamate; α-(4-chlorophenoxy)-p-acetanisidide; α-(4-chlorophenoxy)-2-bromoacetanilide; α-(4-chlorophenoxy)-3-bromoacetanilide; α-(4-chlorophenoxy)-4-bromoacetanilide; α-(4-chlorophenoxy)-2-chloroacetanilide; α-(4-chlorophenoxy)-3-chloroacetanilide; α-(4-chlorophenoxy)-2,4-dimethylacetanilide; α-(4-chlorophenoxy)-4-ethoxyacetanilide; 1-(4-chlorophenoxyacetyl)-2-phenylhydrazine; α-(4-chlorophenoxy)-4-iodoacetanilide; α-(4-chlorophenoxy)-3-nitroacetanilide; α-(4-chlorophenoxy)-p-acetotoluidide; α-(4-chlorophenoxy)-N-p-xenylacetamide; γ-(4-chlorophenoxy)butyronitrile; 4-chlorophenyl (4-chlorophenoxy)acetate; 1-(4-chlorophenyl)-3-(2-chlorophenyl) urea; 4-chlorophenyl (2,4-dichlorophenoxy)acetate; 1-(3-chlorophenyl)-3,3-(cyclopentamethylene)urea; 1-(3-chlorophenyl-3-phenylurea; S-(4-chlorophenyl)-2-bromothioglycolanilide; S-(4-chlorophenyl)-3-bromothioglycolanilide; 4-chlorophenyl (2,4,5-trichlorophenoxy)acetate; 2,6-dibromobenzoquinone-4-chloroimide; 2,4-dichlorobenzylsulfonyl chloride; 1,3-bis(4-chlorophenoxyacetamido)benzene; 1,4-isomer; 4,4′-bis(4-chlorophenoxyacetamido)biphenyl; 2,4-bis(4-chlorophenoxyacetamido)toluene; α-(2,4-dichlorophenoxy)acetanilide; α-(2,4-dichlorophenoxy)-N-(2-aminoethyl)acetamide; α-(2,4-dichlorophenoxy)-p-acetanisidide; α-(2,4-dichlorophenoxy-2,5-dichloroacetanilide; α-(2,4-dichlorophenoxy)-2,4-dimethylacetanilide; 1-(2,4-dichlorophenoxyacetyl)-2-(2,4-dinitrophenyl)hydrazine; (2,4-dichlorophenoxy)acetic hydrazide; α-(2,4-dichlorophenoxy)aceto-2-naphthalide; α-(2,4-dichlorophenoxy)-p-acetotoluidide; α-(2,4-dichlorophenoxy)-N-o-xenylacetamide; 4-(2,4-dichlorophenoxyacetamido)azobenzene; (2,4-dichlorophenoxy)acetylaminoguanidine; (2,4-dichlorophenoxy)acetyl bromide; α-(2,4-dichlorophenoxy)-N-(hydroxy-tert-butyl)acetamide; S-(2,4-dichlorophenoxyacetyl)isothiourea; 1-(2,4-dichlorophenoxyacetyl)-2-methyl-2-thioisourea; γ-(2,4-dichlorophenoxy)butyric acid; γ,-(2,4-dichlorophenoxy)butyronitrile; 2,4-dichlorophenyl (4-chlorophenoxy)acetate; 2,4-dichlorophenyl (2,4-dichlorophenoxy)acetate; 1-(2,5-dichlorophenyl)-3-phenylurea; S-(2,5-dichlorophenyl)thioglycolamide; 4,4′-bis(2,4-dichlorophenoxyacetamido)biphenyl; 1,4-bis (2,4-dimethylphenoxyacetamido)benzene; 2,4-bis(2,4-dimethylphenoxyacetamido)toluene; 2,4-dichlorophenyl (2,4,5-trichlorophenoxy)acetate; 2,4-dichlorophenyl (4-chlorophenoxy)acetate; 2,3-dichloropropyl (2,4-dibromophenoxy)acetate; 2,3-dichloropropyl (2,4-dichlorophenoxy)acetate; 2-diethylaminoethyl 2,3,5-triiodobenzoate; 3,3′-dimethyl-4,4′-bis(4-chlorophenoxyacetamido)biphenyl; 3,3′-dimethyl-4,4′-bis(2-methylphenoxyacetamido)biphenyl; 1,3-bis(2-methylphenoxyacetamido)benzene; 1,4-isomer; 4,4′-bis(2-methylphenoxyacetamido)biphenyl; 4,4′-bis(2,4-dimethylphenoxyacetamido)biphenyl; 1-(4-ethoxyphenyl)-3-phenylurea; Et 2-bromo-3,5-dichlorobenzoate; Et (4-bromophenoxy)acetate; Et (4-chlorophenoxy)acetate; 2-ethylhexyl (2,4-dichlorophenoxy)acetate; methallyl (4-chlorophenoxy)acetate; 2-methoxy-4-methylphenyl 1-naphthalenecarbamate; Me 2-bromo-3-nitrobenzoate; 4-(2-methyl-4-chlorophenoxyacetamido)azobenzene; α-(2-methyl-6-chlorophenoxy)-2,5-dichloroacetanilide; 2-methyl-4-chlorophenyl (2,4-dichlorophenoxy)acetate; 1-methyl-2,4-bis(2,4-dichlorophenoxyacetamido)benzene; Me 4-nitrophenylcarbamate; Me (2,4,5-trichlorophenoxy)acetate; (2-hydroxy-1-naphthyl)-1-piperidylphenylmethane; 2-nitrobutyl (2,4,5-trichlorophenoxy)acetate; 4-nitro-N,N-dimethylaniline; octyl (2,4-dichlorophenoxy)acetate; pentachlorophenyl (2,4,5-trichlorophenoxy)acetate; 1-phenyl-3,3-cyclopentamethyleneurea; Ph phenylcarbamate; Ph (2,4,5-trichlorophenoxy)acetate; iso-Pr (2,4-dichlorophenoxy)acetate; 3-isopropoxy-2-naphthoic acid; 1,3-di-m-tolyl-urea; (2,4,5-tribromo-3,5-dimethylphenoxy)acetic acid; 2,4,6-tribromophenyl acetate; 2,4,5-trichlorobenzamide; trichloroethyl (2,4-dibromophenoxy)acetate; 2,2,2-trichloroethyl (2,4-dichlorophenoxy)acetate; 2,4,5-trichlorophenoxyacetic acid; 2-(2,4,5-trichlorophenoxyacetamido)anthraquinone; α-(2,4,5-trichlorophenoxy)-4-bromoacetanilide; α-(2,4,5-trichlorophenoxy)-4-methoxyacetanilide; (2,4,5-trichlorophenoxy)aceto-2-naphthalide; α-(2,4,6-trichlorophenoxy)-4-sulfoacetonaphthalide; α-(2,4,5-trichlorophenoxy)-m-acetotoluidide; (2,4,5-trichlorophenoxy)acetyl chloride; 1-(2,4,5-trichlorophenoxyacetyl)-2-(p-nitrophenyl)hydrazine; 2,4,6-trichlorophenyl (4-chlorophenoxy)acetate; 2,4,6-trichlorophenyl (2,4-dichlorophenoxy)acetate; 2,4,6-trichlorophenyl (2,4,5-trichlorophenoxy)acetate; N-[3-(trifluoromethyl)phenyl]-α-(4-chlorophenoxy)acetamide; N-[3-(trifluoromethyl)phenyl]-α-(2,4,5-trichlorophenoxy)acetamide; 2,3,5-triiodobenzoic acid; 2,3,5-triiodobenzoyl chloride; 1-[tris(hydroxymethyl)methylamino]-2,4-dinitrobenzene; N-(p-xenyl)-α-(2,4-dichlorophenoxy)acetamide. The following, as Group IV-C, were also examined by the three tests and showed relatively low activity as compared with I: 2-acetoxyethyl 1-naphthalenecarbamate; 2-acetoxyethyl phenylcarbamate; (2-acetyl-4-chlorophenoxy)acetic acid; (2-allyl-4-chlorophenoxy)acetic acid; allyl 1-naphthalenecarbamate; allyl phenylcarbamate; allyl 4-tolyl sulfone; 1-aminoanthraquinone; 2-isomer; 4-aminobenzyl tris(hydroxymethyl)methylamine-di-HCl; 2-amino-3,5-dichlorobenzoic acid; 2-aminoethylsulfuric acid; 8-amino-1-naphthol-3,6-disulfonic acid; 1-amino-2-naphthol-4-sulfonic acid; 4-aminophenol; (2-aminophenoxy)acetic acid; (4-aminophenyl)acetic acid; 2-aminopyridine; 2-aminothiazole; 2-amylaminoethyl 4-butoxybenzoate-HCl; isoamyl formate; amyl (2-methylphenoxy)acetate; isoamyl 1-naphthalenecarbamate; 4-tert-amylphenol; amyl phenylcarbamate; isoamyl phenylcarbamate; (4-arsonophenoxy)acetic acid; benzoic acid; 4-benzylaminophenol-HCl; benzyl Bu sulfone; allyl (benzylsulfonyl)acetate; Me (benzylsulfonyl)acetate; N-benzyl-N,N’-bis[tris(hydroxymethyl)methyl]-2-hydroxy-1,3-diaminopropane; benzyl Et sulfone; benzyl Me sulfone; benzyl 4-tolyl sulfone; benzyl[tris(hydroxymethyl)methyl]amine; 1,3-bis{ [tris(hydroxymethyl)methyl]amino}-2-propanol-HCl; 2-bromobenzamide; 2-bromobenzanilide; 2-bromo-2′,4′-dichlorobenzanilide; 2-bromobenzoic acid; 3-isomer; NH4 4-bromobenzoate; 4-bromobenzonitrile; (2-bromo-4-tert-butylphenoxy)acetic acid; 2-bromo-3,5-dichloro-N-butylbenzamide; 2-bromo-3,4′,5-trichlorobenzanilide; 2-bromoethylamine; 2-bromoethyl 4-ethoxythiolbenzoate; 2-bromoethyl (2-methyl-4-chlorophenoxy)acetate; 2-bromo-4-nitrobenzoic acid; 2-bromo-5-nitrobenzoic acid; NH4 2-bromo-5-nitrobenzoate; 3-bromo-4-nitrobenzoic acid; 3-bromo-5-nitrobenzoic acid; 4-bromophenol; (2-bromophenoxy)acetic acid; α-(4-bromophenoxy)-4-bromoacetanilide; α-(4-bromophenoxy)-4-chloroacetanilide; α-(4-bromophenoxy)-2,5-dichloroacetanilide; 3-bromophenylammonium fluoroborate; 4-bromophenylammonium fluoroborate; 1-(2-bromophenyl)-3-(2-chlorophenyl)urea; 1-(4-bromophenyl)-3-(3-chlorophenyl)urea; 1-(2-bromophenyl)-3-(3-chlorophenyl)urea; N-(4-bromophenyl)-3-(2-chlorophenyl)urea; NH4 (4-bromophenyl)dithiocarbamate; 4-bromophenyl 1-naphthalenecarbamate; (2-bromo-4-phenylphenoxy)acetic acid; 4-bromophenyl phenylcarbamate; 1-(2-bromophenyl)-3-phenylurea; 1-(3-bromophenyl)-3-phenylurea; 1-(4-bromophenyl)-3-phenylurea; 3-bromophenylsulfamic acid; N-(3-bromophenyl) α,α,α-trichloroacetamide; 2-butylaminoethyl 2-butoxybenzoate-HCl; 2-butylaminoethyl diphenylacetate-HCl; 2-butylaminoethyl 4-(heptyloxy)benzoate-HCl; 2-butylaminoethyl 4-propoxybenzoate-HCl; 2-butylaminoethyl 2-(thiobutoxy)benzoate; (2-sec-butyl-4-chlorophenoxy)acetic acid; Hg butyldithiocarbamate; Bu 1-naphthalenecarbamate; iso-Bu 1-naphthalenecarbamate; 4-tert-butylphenol; Bu phenylcarbamate; iso-Bu phenylcarbamate; tert-Bu phenylcarbamate; 1-butyl-3-phenylthiourea; N-butyl-α-(2,4,5-trichlorophenoxy)acetamide; 4-carbethoxy-6-methoxyquinoline; 1-carbethoxy-3-phenylurea; 1-carbobutoxyethyl 1-naphthalenecarbamate; 1-carboisopropoxyethyl 1-naphthalenecarbamate; O-(2-carboxymethoxybenzoyl)glycolic acid; O-(2-carboxymethoxy-3-methyl-5-chlorobenzoyl)glycolic acid; NH4 (carboxymethyl)dithiocarbamate; Na (4-carboxymethylphenyl)dithiocarbamate; 2-carboxy-6-methylphenyl phenylcarbamate; NH4 (4-carboxyphenyl)dithiocarbamate; 4-carboxyphenylglycine; o-carboxyphenyl 1-naphthalenecarbamate; 1-(4-carboxyphenyl)-3-(1-naphthyl)urea; 4-carboxyphenyl phenylcarbamate; S-(4-carboxyphenyl)thioglycolic acid; N4-(β-carboxypropionyl)sulfanilamide; pyrocatechol; chloroacetyl chloride; 4-chloroanisole; 2-chlorobenzaldehyde O-carboxymethyloxime; 2-chlorobenzaldehyde oxime; 4-chlorobenzamide; 4-chlorobenzenesulfonamide; 4-chlorobenzoic acid; bis(4-chlorobenzyl)disulfide; S-(4-chlorobenzyl)thioglycolic acid; bis(4-chlorobenzyl)sulfide; (4-chlorobenzylsulfonyl)acetic acid; 4-chlorocinnamic acid; highly chlorinated 1,5-dihydroxynaphthalene; 2-chloroethyl (2-propyl-4-chlorophenoxy)acetate; chlorohydroquinone; chlorohydroquinone-O,O-diacetic acid; 4-(chloromercuri)phenol; [4-(chloromercuri)phenoxy]acetic acid; [2-(chloromethyl)-4-chlorophenoxy]acetic acid; 2-chloro-4-methyl-6-methoxyquinoline; 2-chloro-4-methylquinoline; (7-chloro-1-naphthoxy)acetic acid; 1-chloronaphthylacetic acid mixture; 4-chlorophenetole; 1-(4-chlorophenoxyacetamido)naphthalene; 2-(4-chlorophenoxyacetamido)naphthalene; α-(4-chlorophenoxy)-2,5-dichloroacetanilide; α-(4-chlorophenoxy)-N,N-diethyl-acetamide; (4-chlorophenoxy)acetic piperidide; α-(4-chlorophenoxy)-2-nitroacetanilide; α-(4-chlorophenoxy)-2,4,6-trichloroacetanilide; (4-chlorophenoxy)(4-chlorophenyl)acetic acid; (4-chlorophenoxy)fumaric acid; 2-(4-chlorophenoxy)heptanoic acid; β-(4-chlorophenoxy)propionic acid; β-(4-chlorophenoxy)propionitrile; 4-chlorophenylammonium fluoroborate; 1-(2-chlorophenyl)-3-butylurea; 1-(3-chlorophenyl)-3-butylurea; 1-(2-chlorophenyl)-1-(4-carboxyphenyl)urea; N-(3-chlorophenyl)-α-chloroacetamide; 4-isomer; 1-(3-chlorophenyl)-3-(2-chlorophenyl) urea; 1-(4-chlorophenyl)-3-(3-chlorophenyl) urea; 3-(2-chlorophenyl)-1,1-cyclopentamethyleneurea; NH4 (4-chlorophenyl)dithiocarbamate; 2-chloro-1,4-phenylene bis(phenylcarbamate); N-(2-chlorophenyl)glycine; 1-(2-chlorophenyl)-3-(2-hydroxyethyl) urea; 3-chloro isomer; 3-chlorophenyl isocyanate; 1-(2-chlorophenyl)-3-(1-naphthyl) urea; 4-isomer; [2-(4-chlorophenyl)phenoxy]acetic acid; 1-(2-chlorophenyl)-3-phenylurea; 4-chloro isomer; 1-(2-chlorophenyl)-3-phenylthiourea; 3-isomer; 4-isomer; Na (3-chlorophenyl)sulfamate; (4-chlorophenyl)sulfamic acid; S-(2-chlorophenyl)thioglycolic acid; S-(4-chlorophenyl)thioglycolamide; S-(4-chlorophenyl)thioglycolanilide; S-(4-chlorophenyl)-4′-bromothioglycolanilide; S-(4-chlorophenyl)thioglycol-p-phenetidide; S-(4-chlorophenyl)thioglycol-m-toluidine; 1-(2-chlorophenyl)urea; 3-isomer; 1,3-bis(2-chlorophenyl)urea; 3-isomer; cinnamic acid; cinnamoyl chloride; o-cresol; m-isomer; p-isomer; 4-toloxyacetyl chloride; cyanoacetamide; (2-cyclohexyl-4-chlorophenoxy)acetic acid; (decyl-mercapto)acetic acid; (decylsulfonyl)acetic acid; bis(2-acetoxyethyl) sulfone; 2,6-diaminopyridine monohydrochloride; 2,6-dibromo-4-carboxyphenyl phenylcarbamate; α,β-dibromodihydrocinnamic acid; 4,6-dibromo-1,3-dihydroxybenzene; (2,6-dibromo-4-methylphenoxy)acetic acid; 2,4-dibromophenyl phenylcarbamate; α, β-dibromo-γ-phenylpropionamide; bis(2-butyroxyethyl) sulfone; 2,5-dichloro-4-aminobenzenesulfonic acid; 2,4-dichloroanisole; 2,6-dichlorobenzenoneindophenol sodium salt; 2,5-dichlorobenzenesulfonamide; 2,5-dichlorobenzenesulfonyl chloride; (2,4-dichlorobenzylmercapto)acetic acid; bis(2,4-dichlorobenzyl)disulfide; 2,4-dichlorobenzyl mercaptan; bis(2,4-dichlorobenzyl)sulfide; bis(2,4-dichlorobenzyl)sulfone; 5,7-dichloro-3-coumaranone; N,2,4-trichloroacetanilide; 2,6-dichloro-3-ethyl-4-methylpyridine; 2,4-dichloromandelic acid; 2,6-dichloro-4-methyl-5-ethylnicotinamide; (2,6-dichloro-4-methylphenoxy)acetic acid; (2,4-dichloro-6-methylphenoxy)acetyl chloride; (2,4-dichloro-1-naphthoxy)acetic acid; 2,4-dichlorophenetole; 2,4-dichlorophenol; 1-(2,4-dichlorophenoxyacetamido)anthraquinone; 2-(2,4-dichlorophenoxyacetamido)anthraquinone; (2,6-dichlorophenoxy)acetic acid; 3,5-isomer; α-(2,4-dichlorophenoxy)-4-bromoanilide; α-(2,4-dichlorophenoxy)-4-chloroacetanilide; α-(2,4-dichlorophenoxy)-p-acetophenetide; α-(2,4-dichlorophenoxy)-N-(2-hydroxyethyl)acetamide; 2,4-dichlorophenoxyaceto-1-naphthalide; α-(2,4-dichlorophenoxy)-2-nitroacetanilide; α-(2,4-dichlorophenoxy)-3-nitroacetanilide; 1-(2,4-dichlorophenoxyacetyl)-2-(p-nitrophenyl)hydrazine; α-(2,4-dichlorophenoxy)-N-2′-pyridylacetamide; α-(2,4-dichlorophenoxy)-2,4,6-trichloroacetanilide; 2-(2,4-dichlorophenoxyacetamido)-6,8-naphthalenedisulfonic acid; 1-(2,4-dichlorophenoxyacetyl)-1-phenylsemicarbazide; (2,4-dichlorophenoxy)(p-chlorophenyl)acetic acid; 1-(2,4-dichlorophenoxy)-2,3-epoxypropane; (2,4-dichlorophenoxy) fumaric acid; Addnl. information in printed abstract The experimental part of the paper was very detailed, including the reaction process of 3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4COA of Formula: C7H4BrNO4)

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.Most of the natural organobromine compounds are produced by marine organisms , and several brominated metabolites with antibacterial , antitumor , antiviral , and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. In contrast, terrestrial plants account only for a few bromine-containing compounds.COA of Formula: C7H4BrNO4

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lindner, Stephanie’s team published research in Advanced Synthesis & Catalysis in 2015 | CAS: 116529-61-4

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Safety of 3-Bromo-2-nitrobenzoic acid Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides.

《Stannylation and Stille Coupling of Base-Sensitive Tetrahydroxanthones to Heteromeric Biaryls》 was published in Advanced Synthesis & Catalysis in 2015. These research results belong to Lindner, Stephanie; Nieger, Martin; Braese, Stefan. Safety of 3-Bromo-2-nitrobenzoic acid The article mentions the following:

Herein, the synthesis of heteromeric tetrahydroxanthone biaryls is described, a widespread core structure of many natural products. The development of both stannylation and Stille coupling procedures of base-sensitive tetrahydroxanthones enabled their coupling with benzene derivatives as well as with xanthenes. These methods provide access to structures that are analogous to parnafungin as well as to dimeric compounds similar to secalonic acid or (5R,5’R,6R,6’R,10aR,10’aR)-rel-(-)-5,5′-bis(acetyloxy)-10a,10’a-bis[(acetyloxy)methyl]-5,5′,6,6′,7,7′,10a,10’a-octahydro-1,1′,8,8′-tetrahydroxy-6,6′-dimethyl-[2,4′-Bi-9H-xanthene]-9,9′-dione [i.e., phomoxanthone]. The synthesis of the target compounds was achieved using 7-bromo-2,3,4,4a-tetrahydro-1H-xanthen-1-one, 2,3,4,4a-tetrahydro-7-iodo-1H-xanthen-1-one (1R,4aS)-rel-7-bromo-2,3,4,4a-tetrahydro-1H-xanthen-1-ol as starting materials. Key intermediates for the coupling reactions included (tributylstannyl)xanthene derivatives Dimers thsu formed included 2,2′,3,3′,4,4′,4a,4’a-octahydro-[7,7′-bi-1H-Xanthene]-1,1′-dione. In the experimental materials used by the author, we found 3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4Safety of 3-Bromo-2-nitrobenzoic acid)

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Safety of 3-Bromo-2-nitrobenzoic acid Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Garg, Neeraj’s team published research in Angewandte Chemie, International Edition in 2018 | CAS: 116529-61-4

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.Most of the natural organobromine compounds are produced by marine organisms , and several brominated metabolites with antibacterial , antitumor , antiviral , and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. In contrast, terrestrial plants account only for a few bromine-containing compounds.Electric Literature of C7H4BrNO4

In 2018,Angewandte Chemie, International Edition included an article by Garg, Neeraj; Conway, Louis P.; Ballet, Caroline; Correia, Mario S. P.; Olsson, Frida K. S.; Vujasinovic, Miroslav; Loehr, J.-Matthias; Globisch, Daniel. Electric Literature of C7H4BrNO4. The article was titled 《Chemoselective Probe Containing a Unique Bioorthogonal Cleavage Site for Investigation of Gut Microbiota Metabolism》. The information in the text is summarized as follows:

While metabolites derived from gut microbiota metabolism have been linked to disease development in the human host, the chem. tools required for their detailed anal. and the discovery of biomarkers are limited. A unique and multifunctional chem. probe for mass spectrometric anal., which contains p-nitrocinnamyloxycarbonyl as a new bioorthogonal cleavage site has been designed and synthesized. Coupled to magnetic beads, this chem. probe allows for straightforward extraction of metabolites from human samples and release under mild conditions. This isolation from the sample matrix results in significantly reduced ion suppression, an increased mass spectrometric sensitivity, and facilitates the detection of metabolites in femtomole quantities. The chemoselective probe was applied to the anal. of human fecal samples, resulting in the discovery of four metabolites previously unreported in this sample type and confirmation of the presence of medically relevant gut microbiota-derived metabolites. In addition to this study using 3-Bromo-2-nitrobenzoic acid, there are many other studies that have used 3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4Electric Literature of C7H4BrNO4) was used in this study.

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.Most of the natural organobromine compounds are produced by marine organisms , and several brominated metabolites with antibacterial , antitumor , antiviral , and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. In contrast, terrestrial plants account only for a few bromine-containing compounds.Electric Literature of C7H4BrNO4

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Erickson, J. L. E.’s team published research in Journal of the American Chemical Society in 1952 | CAS: 116529-61-4

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.Most of the natural organobromine compounds are produced by marine organisms , and several brominated metabolites with antibacterial , antitumor , antiviral , and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. Synthetic Route of C7H4BrNO4 Moreover, several studies demonstrate that the average proportion of bromine in drugs is significantly higher than that in natural products.

In 1952,Journal of the American Chemical Society included an article by Erickson, J. L. E.; Dechary, J. M.; Pullig, T. R.. Synthetic Route of C7H4BrNO4. The article was titled 《Bromo-2-nitrobenzoic acids》. The information in the text is summarized as follows:

Synthetic methods of preparation for the 4 isomeric bromo-2-nitrobenzoic acids are described. 3-Bromo-2-nitrobenzoic acid was prepared by deamination of a new compound, 5-bromo-6-nitroanthranilic acid, m. 201-2.5° [from bromination of 6,2-O2N(H2N)C6H3CO2H]. The synthesis of 4-bromo-2-nitrobenzoic acid was accomplished by the hydrolysis of 4-bromo-2-nitrobenzonitrile and also by the oxidation of 4-bromo-2-nitrotoluene. 5-Bromo-2-nitrobenzoic acid was prepared by the nitration of m-bromobenzoic acid, an old method. 6-Bromo-2-nitrobenzoic acid, m. 177.3-7.5°, a new compound, was obtained in excellent yield from 6-nitroanthranilic acid. After reading the article, we found that the author used 3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4Synthetic Route of C7H4BrNO4)

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.Most of the natural organobromine compounds are produced by marine organisms , and several brominated metabolites with antibacterial , antitumor , antiviral , and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. Synthetic Route of C7H4BrNO4 Moreover, several studies demonstrate that the average proportion of bromine in drugs is significantly higher than that in natural products.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Jacquart, Aurelie’s team published research in Chemical Communications (Cambridge, United Kingdom) in 2010 | CAS: 116529-61-4

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Electric Literature of C7H4BrNO4 Due to the reactivity of bromide, they are used as potential precursors or important intermediates in organic synthesis.

Jacquart, Aurelie; Tauc, Patrick; Pansu, Robert B.; Ishow, Elena published an article in Chemical Communications (Cambridge, United Kingdom). The title of the article was 《Tunable emissive thin films through ICT photodisruption of nitro-substituted triarylamines》.Electric Literature of C7H4BrNO4 The author mentioned the following in the article:

UV-assisted photocleavage in the solid state of orange emitting nitro-substituted triarylamines leads to the appearance of blue emission following photodisruption of the ICT state. The experimental part of the paper was very detailed, including the reaction process of 3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4Electric Literature of C7H4BrNO4)

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Electric Literature of C7H4BrNO4 Due to the reactivity of bromide, they are used as potential precursors or important intermediates in organic synthesis.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary