Ouyang, Mi team published research in Journal of Polymer Science (Hoboken, NJ, United States) in 2022 | 1575-37-7

Recommanded Product: 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Recommanded Product: 4-Bromobenzene-1,2-diamine.

Ouyang, Mi;Dai, Dacheng;Hu, Xuming;Li, Yuwen;Chen, Zhangxin;Tao, Bowen;Zhang, Lina;Li, Weijun;Dong, Yujie;Bai, Ru;Lv, Xiaojing;Zhang, Cheng research published 《 In-situ preparation and electrochromic properties of TiO2 / PTPA-HTAN core-shell nanocomposite film》, the research content is summarized as follows. A new star-shaped structure conjugated microporous polymers, poly (2,8,14-tri[4-diphenyl-benzene]-hexaazatrinaphthylene) (PTPA-HATN), was designed and in-situ electrochem. polymerized on the surfaces of FTO electrodes with a directional alignment TiO2 nanorod array to obtain TiO2/PTPA-HATN core-shell nanocomposite films. Compared with the PTPA-HATN film, the TiO2/PTPA-HATN composite film exhibits higher optical contrast and faster response time, with contrast of 57% at 783 nm, coloring time of 3.62 s and discoloring time of 2.55 s (43%, 4.63 s and 4.77 s for PTPA-HATN film, resp.). After 400 cycles, the contrast of nanocomposite film decreased by 28%, while the PTPA-HATN film basically lost its electrochromic properties. A simple three-layer EC prototype device based on TiO2/PTPA-HATN nanocomposite film constructed with hydrogel electrolyte clearly shows color changes at different voltages. On the one hand, the formation of core-shell porous nanostructure of TiO2/PTPA-HATN composite film provides a larger ion doping/de-doping interface, shortening the average diffusion length of ions. On the other hand, the large indented polymer-nanorods contact interface makes it difficult for the polymer to detach from the electrode, thus significantly improving the cyclic stability of the composite film.

Recommanded Product: 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary