Li, Kai team published research in Journal of the American Chemical Society in 2022 | 244205-40-1

Safety of (2-Bromophenyl)boronic acid, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

Organic compounds having carbon bonded to bromine are called organic bromides. 244205-40-1, formula is C6H6BBrO2, Name is (2-Bromophenyl)boronic acid. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Safety of (2-Bromophenyl)boronic acid.

Li, Kai;Huang, Shengli;Liu, Tianyu;Jia, Shiqi;Yan, Hailong research published 《 Organocatalytic Asymmetric Dearomatizing Hetero-Diels-Alder Reaction of Nonactivated Arenes》, the research content is summarized as follows. Nonactivated arenes, such as benzene derivatives, are chem. inert due to their intrinsic aromaticity and low polarity. The catalytic asym. dearomatization (CADA, coined by You and co-workers) of the nonactivated arenes represents a formidable challenge. Herein, the authors demonstrate an organocatalytic asym. dearomatizing hetero-Diels-Alder reaction of benzene derivatives The tunable regioselectivity of this strategy allowed delivery of a diversity of stereochem. complex polycyclic compounds, e.g., I, and oxahelicenes, e.g., II, with excellent stereoselectivity. The high complexity and three-dimensionality of the products were crucial for their potential applications in materials science and drug discovery. Mechanistic studies suggested that this reaction proceeded through a chiral tetra-substituted vinylidene ortho-quinone methide (VQM) intermediate, which was extremely active to overcome the loss of aromaticity of benzene derivatives with concomitant chirality transfer.

Safety of (2-Bromophenyl)boronic acid, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary