Hor, Seanghai team published research in Polymer in 2022 | 20469-65-2

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., COA of Formula: C8H9BrO2

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene. Organic compounds having carbon bonded to bromine are called organic bromides. COA of Formula: C8H9BrO2.

Hor, Seanghai;Oyama, Kin-ichi;Koga, Nobuaki;Tsukamoto, Masaki research published ã€?Synthesis and characterization of methoxybenzene-linked polyimides formed by 1,4-addition to bismaleimidesã€? the research content is summarized as follows. Methoxybenzene-linked polyimides were synthesized by a trifluoromethanesulfonic acid (TfOH)-catalyzed 1,4-addition (Michael addition) reaction. Newly synthesized 1,3-bis(3,5-dimethoxyphenoxy)propane and known 5,5′-oxybis(1,3-dimethoxybenzene) as nucleophilic monomers were reacted with several bismaleimides in the presence of a catalytic amount of TfOH in m-cresol. Use of 1,3-bis(3,5-dimethoxyphenoxy)propane afforded polyimides with number average mol. weights (Mn)s of 8000-15000. However, polyimides with Mn of 4000 or less were obtained when 5,5′-oxybis(1,3-dimethoxybenzene) was employed as a monomer. The synthesized polyimides showed good thermostability as judged by 10% weight loss temperatures between 417 and 441°. Their glass transition temperatures were around 200°. These polymers featured a wide range of solubility in organic solvents such as m-cresol, DMF, pyridine, and chloroform.

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., COA of Formula: C8H9BrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary