Adding a certain compound to certain chemical reactions, such as: 38573-88-5, name is 1-Bromo-2,3-difluorobenzene, belongs to bromides-buliding-blocks compound, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 38573-88-5, Recommanded Product: 1-Bromo-2,3-difluorobenzene
Example A-26 4-(2,3-Difluoro-phenyl)-1H-indole To a mixture of 4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1H-indole (3.78 g, 15.5 mmol), and 1-bromo-2,3-difluorobenzene (3 g, 15.5 mmol) in THF (55 mL) were added Palladium catalyst Pd(PPh3)4 (0.54 g, 0.47 mmol) and the freshly prepared sodium hydroxide solution (1.865 g, 47 mmol in 22 mL of water). The system was degassed and then charged with nitrogen. The degas procedure was repeated for three times. The mixture was stirred under nitrogen at 75° C. oil bath for overnight. TLC showed the completion of the coupling reaction. The mixture was cooled to room temperature, diluted with ethyl acetate, and separated from water layer. The ethyl acetate solution was washed with brine, and dried over Na2SO4. After filtration, the solvents were evaporated, and the crude product was purified by a silica gel column to give 2.92 g (82percent) of 4-(2,3-difluoro-phenyl)-1H-indole.
At the same time, in my other blogs, there are other synthetic methods of this type of compound, 1-Bromo-2,3-difluorobenzene, and friends who are interested can also refer to it.
Reference:
Patent; Sugen, Inc.; US2003/69297; (2003); A1;,
Bromide – Wikipedia,
bromide – Wiktionary