Application of 539-74-2, Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. 539-74-2, Name is Ethyl 3-bromopropanoate, SMILES is CCOC(=O)CCBr, belongs to bromides-buliding-blocks compound. In a article, author is Pipal, Robert W., introduce new discover of the category.
Metallaphotoredox aryl and alkyl radiomethylation for PET ligand discovery
Positron emission tomography (PET) radioligands (radioactively labelled tracer compounds) are extremely useful for in vivo characterization of central nervous system drug candidates, neurodegenerative diseases and numerous oncology targets(1). Both tritium and carbon-11 radioisotopologues are generally necessary for in vitro and in vivo characterization of radioligands(2), yet there exist few radiolabelling protocols for the synthesis of either, inhibiting the development of PET radioligands. The synthesis of such radioligands also needs to be very rapid owing to the short half-life of carbon-11. Here we report a versatile and rapid metallaphotoredox-catalysed method for late-stage installation of both tritium and carbon-11 into the desired compounds via methylation of pharmaceutical precursors bearing aryl and alkyl bromides. Methyl groups are among the most prevalent structural elements found in bioactive molecules, and so this synthetic approach simplifies the discovery of radioligands. To demonstrate the breadth of applicability of this technique, we perform rapid synthesis of 20 tritiated and 10 carbon-11-labelled complex pharmaceuticals and PET radioligands, including a one-step radiosynthesis of the clinically used compounds [C-11]UCB-J and [C-11]PHNO. We further outline the direct utility of this protocol for preclinical PET imaging and its translation to automated radiosynthesis for routine radiotracer production in human clinical imaging. We also demonstrate this protocol for the installation of other diverse and pharmaceutically useful isotopes, including carbon-14, carbon-13 and deuterium.
Application of 539-74-2, The reactant in an enzyme-catalyzed reaction is called a substrate. Enzyme inhibitors cause a decrease in the reaction rate of an enzyme-catalyzed reaction.I hope my blog about 539-74-2 is helpful to your research.