Nakanishi, Tatsuaki published the artcileSynthesis and optical properties of photovoltaic materials based on the ambipolar dithienonaphthothiadiazole unit, Related Products of bromides-buliding-blocks, the publication is Journal of Materials Chemistry A: Materials for Energy and Sustainability (2015), 3(8), 4229-4238, database is CAplus.
Dithieno[3’2′:5,6;2”,3”:7,8]naphtho[2,3-c][1,2,5]thiadiazole (DTNT) was designed to control the band energies of the polymers for photovoltaic materials. Electrochem. anal. showed that DTNT acts as both an electron donor and an electron acceptor, revealing the ambipolar nature of the DTNT unit. The direct arylation polymerization of DTNT with 2,2′-bithiophene (BTh) and 3,6-bis(2-thienyl)pyrrolo[3,4-c]pyrrole-1,4-dione (DPP) afforded 4 polymers that differed in either the unit of copolymerization or the chosen side chains. In the PDTNT-BTh series, a shoulder absorption band was observed at a longer wavelength than the intense absorption band. The PDTNT-DPP series exhibited a narrow band gap of <1.4 eV and a low HOMO energy of -5.43 eV. An organic photovoltaic cell that contained a PDTNT-BTh polymer with 2-ethylhexyl groups and [6,6]-phenyl-C71-butyric acid Me ester (PC71BM) as an active layer afforded the best performance among the studied compounds, with a JSC of 6.98 mA cm-3, a VOC of 0.758 V, a FF of 0.52, and a PCE of 2.76%.
Journal of Materials Chemistry A: Materials for Energy and Sustainability published new progress about 303734-52-3. 303734-52-3 belongs to bromides-buliding-blocks, auxiliary class Thiophene,Bromide, name is 2-Bromo-3-(2-ethylhexyl)thiophene, and the molecular formula is C12H19BrS, Related Products of bromides-buliding-blocks.
Referemce:
https://en.wikipedia.org/wiki/Bromide,
bromide – Wiktionary