Yu, Bing et al. published their research in Zhongguo Yaowu Huaxue Zazhi in 2004 | CAS: 4457-67-4

1-Bromo-4-methoxybutane (cas: 4457-67-4) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon闂佺偨鍎茶ぐ绲﹐mine bond is electrophilic, i.e. alkyl bromides are alkylating agents. Commercially available organobromine pharmaceuticals include the vasodilator nicergoline, the sedative brotizolam, the anticancer agent pipobroman, and the antiseptic merbromin. SDS of cas: 4457-67-4

Synthesis of a new antidepressant, fluvoxamine maleate was written by Yu, Bing;Wu, Fanhong. And the article was included in Zhongguo Yaowu Huaxue Zazhi in 2004.SDS of cas: 4457-67-4 This article mentions the following:

Fluvoxamine maleate was synthesized using Et benzoate as the starting material via four steps: substitution reaction, aminolysis, hydrolysis and salt formation. The target compound was identified by IR and 1H-NMR, and the overall yield was 51%. The preparative method of N-(2-bromoethyl) phthalimide was improved. In the experiment, the researchers used many compounds, for example, 1-Bromo-4-methoxybutane (cas: 4457-67-4SDS of cas: 4457-67-4).

1-Bromo-4-methoxybutane (cas: 4457-67-4) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon闂佺偨鍎茶ぐ绲﹐mine bond is electrophilic, i.e. alkyl bromides are alkylating agents. Commercially available organobromine pharmaceuticals include the vasodilator nicergoline, the sedative brotizolam, the anticancer agent pipobroman, and the antiseptic merbromin. SDS of cas: 4457-67-4

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Quattropani, Anna et al. published their research in ChemMedChem in 2015 | CAS: 107317-58-8

Methyl 4-bromo-3-(trifluoromethyl)benzoate (cas: 107317-58-8) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon闂佺偨鍎茶ぐ绲﹐mine bond is electrophilic, i.e. alkyl bromides are alkylating agents. The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.Recommanded Product: 107317-58-8

Pharmacophore-Based Design of Novel Oxadiazoles as Selective Sphingosine-1-phosphate (S1P) Receptor Agonists with in vivo Efficacy was written by Quattropani, Anna;Sauer, Wolfgang H. B.;Crosignani, Stefano;Dorbais, Jerome;Gerber, Patrick;Gonzalez, Jerome;Marin, Delphine;Muzerelle, Mathilde;Beltran, Fanny;Nichols, Anthony;Georgi, Katrin;Schneider, Manfred;Vitte, Pierre-Alain;Eligert, Valerie;Novo-Perez, Laurence;Hantson, Jennifer;Nock, Sebastien;Carboni, Susanna;Soares de Souza, Adriano Luis;Arrighi, Jean-Francois;Boschert, Ursula;Bombrun, Agnes. And the article was included in ChemMedChem in 2015.Recommanded Product: 107317-58-8 This article mentions the following:

Sphingosine-1-phosphate (S1P) receptor agonists have shown promise as therapeutic agents for multiple sclerosis (MS) due to their regulatory roles within the immune, central nervous system, and cardiovascular system. Here, the design and optimization of novel [1,2,4]oxadiazole derivatives as selective S1P receptor agonists are described. The structure-activity relation exploration was carried out on the three dominant segments of the series: modification of the polar head group (P), replacement of the oxadiazole linker (L) with different five-membered heterocycles, and the use of diverse 2,2′-disubstituted biphenyl moieties as the hydrophobic tail (H). All three segments have a significant impact on potency, S1P receptor subtype selectivity, physicochem. properties, and in vitro absorption, distribution, metabolism, excretion and toxicity (ADMET) profile of the compounds From these optimization studies, a selective S1P1 agonist, N-methyl-N-(4-{5-[2-methyl-2′-(trifluoromethyl)biphenyl-4-yl]-1,2,4-oxadiazol-3-yl}benzyl)glycine (45), and a dual S1P1,5 agonist, N-methyl-N-(3-{5-[2′-methyl-2-(trifluoromethyl)biphenyl-4-yl]-1,2,4-oxadiazol-3-yl}benzyl)glycine (49), emerged as frontrunners. These compounds distribute predominantly in lymph nodes and brain over plasma and induce long lasting decreases in lymphocyte count after oral administration. When evaluated head-to-head in an exptl. autoimmune encephalomyelitis mouse model, together with the marketed drug fingolimod, a pan-S1P receptor agonist, S1P1,5 agonist 49 demonstrated comparable efficacy while S1P1-selective agonist 45 was less potent. Compound 49 is not a prodrug, and its improved property profile should translate into a safer treatment of relapsing forms of MS. In the experiment, the researchers used many compounds, for example, Methyl 4-bromo-3-(trifluoromethyl)benzoate (cas: 107317-58-8Recommanded Product: 107317-58-8).

Methyl 4-bromo-3-(trifluoromethyl)benzoate (cas: 107317-58-8) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon闂佺偨鍎茶ぐ绲﹐mine bond is electrophilic, i.e. alkyl bromides are alkylating agents. The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.Recommanded Product: 107317-58-8

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Wang, Yan-En et al. published their research in Chinese Chemical Letters in 2017 | CAS: 166821-88-1

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Product Details of 166821-88-1

Synthesis of fluorescent bisboronic acid sensors and their recognition of mono-/oligo-saccharides was written by Wang, Yan-En;Rong, Rui-Xue;Chen, Hua;Zhu, Meng-Yuan;Wang, Bing-He;Li, Xiao-Liu. And the article was included in Chinese Chemical Letters in 2017.Product Details of 166821-88-1 This article mentions the following:

Sensors capable of recognizing cell surface carbohydrates, such as sialyl Lewis X (sLex), are invaluable research tools and for the diagnosis and early detection of many forms of cancer. In this paper, we report the design and synthesis of a series of bisboronic acids 6(a-f) as fluorescent sensors towards mono-/oligosaccharides. Among them, compounds 6d and 6e showed strong binding affinities with glucose and fructose, while compound 6c, in which two anthracene-based boronic acid units were linked by a hexamethylene spacer, was able to recognize sLex selectivity and stained HEPG2 cells at 1 婵炴挾鎸紀l/L. In the experiment, the researchers used many compounds, for example, 2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1Product Details of 166821-88-1).

2-(2-(Bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (cas: 166821-88-1) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Product Details of 166821-88-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Pan, Liangkun et al. published their research in European Journal of Medicinal Chemistry in 2018 | CAS: 6515-58-8

3-(Bromomethyl)benzoic acid (cas: 6515-58-8) belongs to organobromine compounds. Organo bromine compounds are versatile compounds and are widely used in diverse fields. Organo bromine derivatives are used in the dye sector, as an indicator in analytical chemistry (Bromothymol blue is a popular indicator). Commercially available organobromine pharmaceuticals include the vasodilator nicergoline, the sedative brotizolam, the anticancer agent pipobroman, and the antiseptic merbromin. COA of Formula: C8H7BrO2

Design, synthesis and biological evaluation of novel naphthoquinone derivatives as IDO1 inhibitors was written by Pan, Liangkun;Zheng, Qiang;Chen, Yu;Yang, Rui;Yang, Yanyan;Li, Zhongjun;Meng, Xiangbao. And the article was included in European Journal of Medicinal Chemistry in 2018.COA of Formula: C8H7BrO2 This article mentions the following:

Indoleamine 2,3-dioxygenase 1 mediated kynurenine pathway of tryptophan degradation is identified as an appealing and novel target in immunotherapy for the treatment of cancer. In this study, a novel series of naphthoquinone derivatives were synthesized, characterized and evaluated for their inhibitory activities against IDO1, and their structure-activity relationship was investigated. Among them, five compounds, e.g., I,displayed potent IDO1 inhibitory activities with IC50 values ranging between 18 and 61 nM, which are more potent than INCB024360 undergoing clin. trial III evaluation. In addition, three compounds, e.g. II, decreased the kynurenine levels in rat plasma by 30%-50%. Compounds exhibiting excellent IDO1 inhibitory activities were also evaluated for their inhibitory activities against tryptophan 2,3-dioxygenase (TDO). Of which, compound II (IDO1 IC50 = 120 nM) showed promising TDO inhibition (IC50 72 nM) and was identified as an IDO1/TDO dual inhibitor. In the experiment, the researchers used many compounds, for example, 3-(Bromomethyl)benzoic acid (cas: 6515-58-8COA of Formula: C8H7BrO2).

3-(Bromomethyl)benzoic acid (cas: 6515-58-8) belongs to organobromine compounds. Organo bromine compounds are versatile compounds and are widely used in diverse fields. Organo bromine derivatives are used in the dye sector, as an indicator in analytical chemistry (Bromothymol blue is a popular indicator). Commercially available organobromine pharmaceuticals include the vasodilator nicergoline, the sedative brotizolam, the anticancer agent pipobroman, and the antiseptic merbromin. COA of Formula: C8H7BrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Moretto, A. F. et al. published their research in Bioorganic & Medicinal Chemistry in 2006 | CAS: 179232-29-2

Methyl 4-bromo-2-fluorobenzoate (cas: 179232-29-2) belongs to organobromine compounds. Many of the organo bromine compounds are relatively nonpolar. Bromine is more electronegative than carbon (2.8 vs 2.5) and hence the carbon in a carbon闁艰京鐗梤omine bond is electrophilic in nature. Many of the alkyl bromine derivatives are excellent alkylating agents since bromides are good leaving groups. Tribromides, like tetrabutylammonium tribromide, are used as a solid source of bromine. N-bromosuccimide (NBS) is used for the selective bromination of allylic bonds.Synthetic Route of C8H6BrFO2

Bicyclic and tricyclic thiophenes as protein tyrosine phosphatase 1B inhibitors was written by Moretto, A. F.;Kirincich, S. J.;Xu, W. X.;Smith, M. J.;Wan, Z.-K.;Wilson, D. P.;Follows, B. C.;Binnun, E.;Joseph-McCarthy, D.;Foreman, K.;Erbe, D. V.;Zhang, Y. L.;Tam, S. K.;Tam, S. Y.;Lee, J.. And the article was included in Bioorganic & Medicinal Chemistry in 2006.Synthetic Route of C8H6BrFO2 This article mentions the following:

A novel pyridothiophene inhibitor of PTP1B was discovered by rational screening of phosphotyrosine mimics at high micromolar concentrations The potency of this lead compound has been improved significantly by medicinal chem. guided by x-ray crystallog. and mol. modeling. Excellent consistency has been observed between structure-activity relationships and structural information from PTP1B-inhibitor complexes. In the experiment, the researchers used many compounds, for example, Methyl 4-bromo-2-fluorobenzoate (cas: 179232-29-2Synthetic Route of C8H6BrFO2).

Methyl 4-bromo-2-fluorobenzoate (cas: 179232-29-2) belongs to organobromine compounds. Many of the organo bromine compounds are relatively nonpolar. Bromine is more electronegative than carbon (2.8 vs 2.5) and hence the carbon in a carbon闁艰京鐗梤omine bond is electrophilic in nature. Many of the alkyl bromine derivatives are excellent alkylating agents since bromides are good leaving groups. Tribromides, like tetrabutylammonium tribromide, are used as a solid source of bromine. N-bromosuccimide (NBS) is used for the selective bromination of allylic bonds.Synthetic Route of C8H6BrFO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Maroju, Sreedhar et al. published their research in Journal of Applicable Chemistry (Lumami, India) in 2014 | CAS: 615-55-4

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. Commercially available organobromine pharmaceuticals include the vasodilator nicergoline, the sedative brotizolam, the anticancer agent pipobroman, and the antiseptic merbromin. Application In Synthesis of 3,4-Dibromoaniline

Synthesis of novel potential DNA cross-linking new antineoplastic alkylating agents was written by Maroju, Sreedhar;Kumar, P. Naveen;Maroju, Ravichander;Velupula, Ganapathy;Haq, Abdul;Prasad, T. Ravi. And the article was included in Journal of Applicable Chemistry (Lumami, India) in 2014.Application In Synthesis of 3,4-Dibromoaniline This article mentions the following:

Twenty novel potential DNA crosslinking new antineoplastic alkylating agents, oxazolidin-2-ones I [R1 = H, Me, Br, F; R2 = OMe, morpholino, pyrrolidino, 3-pyridyl, etc.; R3 = N(CH2CH2Cl)2] were synthesized by the reaction I (R3 = NH2) with 1,2-dichloroethane in the presence of triethylamine in methylene dichloride under reflux. In the experiment, the researchers used many compounds, for example, 3,4-Dibromoaniline (cas: 615-55-4Application In Synthesis of 3,4-Dibromoaniline).

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. Commercially available organobromine pharmaceuticals include the vasodilator nicergoline, the sedative brotizolam, the anticancer agent pipobroman, and the antiseptic merbromin. Application In Synthesis of 3,4-Dibromoaniline

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Sun, Xiuyun et al. published their research in Angewandte Chemie, International Edition in 2013 | CAS: 2178-24-7

Ethyl (2-bromophenyl)acetate (cas: 2178-24-7) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon闂佺偨鍎茶ぐ绲﹐mine bond is electrophilic, i.e. alkyl bromides are alkylating agents. The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.Name: Ethyl (2-bromophenyl)acetate

Regio- and Chemoselective C-H Chlorination/Bromination of Electron-Deficient Arenes by Weak Coordination and Study of Relative Directing-Group Abilities was written by Sun, Xiuyun;Shan, Gang;Sun, Yonghui;Rao, Yu. And the article was included in Angewandte Chemie, International Edition in 2013.Name: Ethyl (2-bromophenyl)acetate This article mentions the following:

A palladium(II)-catalyzed ortho-chlorination/bromination reaction was developed using electron-deficient arenes as substrates. A preliminary evaluation was conducted on the relative abilities of the directing groups. In the experiment, the researchers used many compounds, for example, Ethyl (2-bromophenyl)acetate (cas: 2178-24-7Name: Ethyl (2-bromophenyl)acetate).

Ethyl (2-bromophenyl)acetate (cas: 2178-24-7) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon闂佺偨鍎茶ぐ绲﹐mine bond is electrophilic, i.e. alkyl bromides are alkylating agents. The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.Name: Ethyl (2-bromophenyl)acetate

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Wieckowska, Anna et al. published their research in Bioorganic & Medicinal Chemistry in 2015 | CAS: 954-81-4

N-(5-Bromopentyl)phthalimide (cas: 954-81-4) belongs to organobromine compounds. Many of the organo bromine compounds are relatively nonpolar. Bromine is more electronegative than carbon (2.8 vs 2.5) and hence the carbon in a carbon闁艰京鐗梤omine bond is electrophilic in nature. The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.Reference of 954-81-4

Synthesis of new N-benzylpiperidine derivatives as cholinesterase inhibitors with 閻?amyloid anti-aggregation properties and beneficial effects on memory in vivo was written by Wieckowska, Anna;Wieckowski, Krzysztof;Bajda, Marek;Brus, Boris;Salat, Kinga;Czerwinska, Paulina;Gobec, Stanislav;Filipek, Barbara;Malawska, Barbara. And the article was included in Bioorganic & Medicinal Chemistry in 2015.Reference of 954-81-4 This article mentions the following:

Due to the complex nature of Alzheimer’s disease, multi-target-directed ligand approaches are one of the most promising strategies in the search for effective treatments. Acetylcholinesterase, butyrylcholinesterase and 閻?amyloid are the predominant biol. targets in the search for new anti-Alzheimer’s agents. Our aim was to combine both anticholinesterase and 閻?amyloid anti-aggregation activities in one mol., and to determine the therapeutic potential in vivo. We designed and synthesized 28 new compounds as derivatives of donepezil that contain the N-benzylpiperidine moiety combined with the phthalimide or indole moieties. Most of these test compounds showed micromolar activities against cholinesterases and aggregation of 閻?amyloid, combined with pos. results in blood-brain barrier permeability assays. The most promising compound 23 (2-(8-(1-(3-chlorobenzyl)piperidin-4-ylamino)octyl)isoindoline-1,3-dione) is an inhibitor of butyrylcholinesterase (IC50 = 0.72 婵炴挾鎷? that has 閻?amyloid anti-aggregation activity (72.5% inhibition at 10 婵炴挾鎷? and can cross the blood-brain barrier. Moreover, in an animal model of memory impairment induced by scopolamine, the activity of 23 was comparable to that of donepezil. The selected compound 23 is an excellent lead structure in the further search for new anti-Alzheimer’s agents. In the experiment, the researchers used many compounds, for example, N-(5-Bromopentyl)phthalimide (cas: 954-81-4Reference of 954-81-4).

N-(5-Bromopentyl)phthalimide (cas: 954-81-4) belongs to organobromine compounds. Many of the organo bromine compounds are relatively nonpolar. Bromine is more electronegative than carbon (2.8 vs 2.5) and hence the carbon in a carbon闁艰京鐗梤omine bond is electrophilic in nature. The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.Reference of 954-81-4

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Markgraf, J. Hodge et al. published their research in Chemistry & Industry (London, United Kingdom) in 1987 | CAS: 615-55-4

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Most of the natural organobromine compounds are produced by marine organisms, and several brominated metabolites with antibacterial, antitumor, antiviral, and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.Name: 3,4-Dibromoaniline

Bromination of 3-haloanilines with 2,4,4,6-tetrabromo-2,5-cyclohexadien-1-one was written by Markgraf, J. Hodge;Marshall, G. Thomas;Greeley, Michael A.. And the article was included in Chemistry & Industry (London, United Kingdom) in 1987.Name: 3,4-Dibromoaniline This article mentions the following:

Mixtures of dihaloanilines I, II, and III (R1 = F, Cl, Br, iodo) were obtained from the resp. 3-R1C6H4NH2. In the experiment, the researchers used many compounds, for example, 3,4-Dibromoaniline (cas: 615-55-4Name: 3,4-Dibromoaniline).

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. Most of the natural organobromine compounds are produced by marine organisms, and several brominated metabolites with antibacterial, antitumor, antiviral, and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.Name: 3,4-Dibromoaniline

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

McKay, Aidan P. et al. published their research in Inorganica Chimica Acta in 2016 | CAS: 6515-58-8

3-(Bromomethyl)benzoic acid (cas: 6515-58-8) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.COA of Formula: C8H7BrO2

Palladium(II) and platinum(II) complexes of ((2-pyridyl)pyrazol-1-ylmethyl)benzoic acids: Synthesis, Solid state characterisation and biological cytotoxicity was written by McKay, Aidan P.;Lo, Warrick K. C.;Preston, Dan;Giles, Gregory I.;Crowley, James D.;Barnsley, Jonathan E.;Gordon, Keith C.;McMorran, David A.. And the article was included in Inorganica Chimica Acta in 2016.COA of Formula: C8H7BrO2 This article mentions the following:

The new ligands 3-(3-(2-pyridyl)pyrazol-1-ylmethyl)benzoic acid (L2) and 5-(3-(2-pyridyl)pyrazol-1-ylmethyl)benzene 1,3-dicarboxylic acid (L3) are reported and the synthesis and characterization of [PdCl2(L)] and [PtCl2(L)] complexes of these and the previously reported 4-(3-(2-pyridyl)pyrazol-1-ylmethyl)benzoic acid (L1) are described. In the solid state, the square planar complexes assemble via hydrogen bonding interactions involving COOH and M-Cl groups as well as by various 闁?stacking interactions involving the aromatic rings on the ligands and, notably, the chelate rings. Hirshfeld surface anal. has been used to gain insight into the assembly of the mols. Preliminary studies of the biol. cytotoxicity of the [PtCl2(L)] complexes against A549 and MDA-MB-231 cancer cell lines are reported. In the experiment, the researchers used many compounds, for example, 3-(Bromomethyl)benzoic acid (cas: 6515-58-8COA of Formula: C8H7BrO2).

3-(Bromomethyl)benzoic acid (cas: 6515-58-8) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.COA of Formula: C8H7BrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary