Zhao, Zean team published research in European Journal of Medicinal Chemistry in 2022 | 4897-84-1

4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., Electric Literature of 4897-84-1

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 4897-84-1, formula is C5H9BrO2, Name is Methyl 4-bromobutanoate. Organic compounds having carbon bonded to bromine are called organic bromides. Electric Literature of 4897-84-1.

Zhao, Zean;Liu, Jin;Kuang, Peihua;Luo, Jian;Surineni, Goverdhan;Cen, Xiaolin;Wu, Ting;Cao, Ying;Zhou, Pingzheng;Pang, Jianxin;Zhang, Qun;Chen, Jianjun research published 《 Discovery of novel verinurad analogs as dual inhibitors of URAT1 and GLUT9 with improved Druggability for the treatment of hyperuricemia》, the research content is summarized as follows. Verinurad (RDEA3170) is a selective URAT1 inhibitor under investigation for the treatment of gout and hyperuricemia. In an effort to further improve the pharmacodynamics/pharmacokinetics of verinurad and to increase the structural diversity, we designed novel verinurad analogs by introducing a linker (e.g. aminomethyl, amino or oxygen) between the naphthalene and the pyridine ring to increase the flexibility. These compounds were synthesized and tested for their in vitro URAT1-inhibitory activity. Most compounds exhibited potent inhibitory activities against URAT1 with IC50 values ranging from 0.24 μM to 16.35 μM. Among them, compound KPH2f exhibited the highest URAT1-inhibitory activity with IC50 of 0.24 μM, comparable to that of verinurad (IC50 = 0.17 μM). KPH2f also inhibited GLUT9 with an IC50 value of 9.37 ± 7.10 μM, indicating the dual URAT1/GLUT9 targeting capability. In addition, KPH2f showed little effects on OAT1 and ABCG2, and thus was unlikely to cause OAT1/ABCG2-mediated drug-drug interactions and/or to neutralize the uricosuric effects of URAT1/GLUT9 inhibitors. Importantly, KPH2f (10 mg/kg) was equally effective in reducing serum uric acid levels and exhibited higher uricosuric effects in a mice hyperuricemia model, as compared to verinurad (10 mg/kg). Furthermore, KPH2f demonstrated favorable pharmacokinetic properties with an oral bioavailability of 30.13%, clearly better than that of verinurad (21.47%). Moreover, KPH2f presented benign safety profiles without causing hERG toxicity, cytotoxicity in vitro (lower than verinurad), and renal damage in vivo. Collectively, these results suggest that KPH2f represents a novel, safe and effective dual URAT1/GLUT9 inhibitor with improved druggabilities and is worthy of further investigation as an anti-hyperuricemic drug candidate.

4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., Electric Literature of 4897-84-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary