Hoque, Emdadul Md team published research in Journal of the American Chemical Society in 2021 | 585-76-2

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , SDS of cas: 585-76-2

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Organobromine compounds have fallen under increased scrutiny for their environmental impact., SDS of cas: 585-76-2.

Hoque, Emdadul Md;Hassan, Mirja Mahamudul Md;Chattopadhyay, Buddhadeb research published �Remarkably Efficient Iridium Catalysts for Directed C(sp2)-H and C(sp3)-H Borylation of Diverse Classes of Substrates� the research content is summarized as follows. Here we describe the discovery of a new class of C-H borylation catalysts and their use for regioselective C-H borylation of aromatic, heteroaromatic, and aliphatic systems. The new catalysts have Ir-C(thienyl) or Ir-C(furyl) anionic ligands instead of the diamine-type neutral chelating ligands used in the standard C-H borylation conditions. It is reported that the employment of these newly discovered catalysts show excellent reactivity and ortho-selectivity for diverse classes of aromatic substrates with high isolated yields. Moreover, the catalysts proved to be efficient for a wide number of aliphatic substrates for selective C(sp3)-H bond borylations. Heterocyclic mols. are selectively borylated using the inherently elevated reactivity of the C-H bonds. A number of late-stage C-H functionalization have been described using the same catalysts. Furthermore, we show that one of the catalysts could be used even in open air for the C(sp2)-H and C(sp3)-H borylations enabling the method more general. Preliminary mechanistic studies suggest that the active catalytic intermediate is the Ir(bis)boryl complex, and the attached ligand acts as bidentate ligand. Collectively, this study underlines the discovery of new class of C-H borylation catalysts that should find wide application in the context of C-H functionalization chem.

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , SDS of cas: 585-76-2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary