In 2015,Park, Kwang-su; Seo, Yujin; Kim, Mi Kyoung; Kim, Kyungdo; Kim, Yun Kyung; Choo, Hyunah; Chong, Youhoon published 《A curcumin-based molecular probe for near-infrared fluorescence imaging of tau fibrils in Alzheimer’s disease》.Organic & Biomolecular Chemistry published the findings.Product Details of 626-40-4 The information in the text is summarized as follows:
In recent years, there has been growing interest in the near-IR (NIR) fluorescence imaging of tau fibrils for the early diagnosis of Alzheimer’s disease (AD). In order to develop a curcumin-based NIR fluorescent probe for tau fibrils, structural modification of the curcumin scaffold was attempted by combining the following rationales: the curcumin derivative should preserve its binding affinity to tau fibrils, and, upon binding to tau fibrils, the probe should show favorable fluorescence properties. To meet these requirements, we designed a novel curcumin scaffold with various aromatic substituents. Among the series, the curcumin derivative 1c with a (4-dimethylamino-2,6-dimethoxy)phenyl moiety showed a significant change in its fluorescence properties (22.9-fold increase in quantum yield; Kd, 0.77 μM; λem, 620 nm; Φ, 0.32) after binding to tau fibrils. In addition, fluorescence imaging of tau-green fluorescent protein-transfected SHSY-5Y cells with 1c confirmed that 1c detected tau fibrils in live cells. After reading the article, we found that the author used 3,5-Dibromoaniline(cas: 626-40-4Product Details of 626-40-4)
3,5-Dibromoaniline(cas: 626-40-4) belongs to anime. Reduction of nitro compounds, RNO2, by hydrogen or other reducing agents produces primary amines cleanly (i.e., without a mixture of products), but the method is mostly used for aromatic amines because of the limited availability of aliphatic nitro compounds. Reduction of nitriles and oximes (R2C=NOH) also yields primary amines.Product Details of 626-40-4
Referemce:
Bromide – Wikipedia,
bromide – Wiktionary