Li, Jian’s team published research in Science and Technology of Advanced Materials in 2021 | CAS: 626-40-4

3,5-Dibromoaniline(cas: 626-40-4) belongs to anime. Milder oxidation, using reagents such as NaOCl, can remove four hydrogen atoms from primary amines of the type RCH2NH2 to form nitriles (R―C≡N), and oxidation with reagents such as MnO2 can remove two hydrogen atoms from secondary amines (R2CH―NHR′) to form imines (R2C=NR′). Tertiary amines can be oxidized to enamines (R2C=CHNR2) by a variety of reagents.Synthetic Route of C6H5Br2N

Synthetic Route of C6H5Br2NIn 2021 ,《Aggregation-induced fluorescent response of urea-bearing polyphenyleneethynylenes toward anion sensing》 appeared in Science and Technology of Advanced Materials. The author of the article were Li, Jian; Saleem, Muhammad; Duan, Qian; Kakuchi, Toyoji; Chen, Yougen. The article conveys some information:

A π-conjugated urea-bearing phenyleneethynylene polymer () was rationally designed by the Sonogashira coupling condensation reaction and had been demonstrated to have a unique fluorescent quenching effect for the optical detection of all determined anions, especially for CN-. The fluorescent emission of was significantly quenched upon adding CN-, together accompanied with a continuous red shift of the emission peak from 442 to 464 nm with the cyanide concentration increased from 0 to 1.0 mM. On the contrary, its precursor polymer, , itself also displayed fluorescent responsibility with all selected anions but had no obvious selectivity and tendency. For instance, the addition of highly basic CN-, N3-, AcO-, or F- to solution in DMF/H2O (volume/volume = 1:1) led to the photoluminescence amplification, while the addition of weakly basic anions like Cl-, I-, and Br- showed a fluorescence quenching effect. Both polymers were in a seriously self-aggregated state in solution no matter in the absence or presence of an anion. Interestingly, it was found that exhibited an aggregation-induced emission behavior, while had an aggregation-caused quenching effect, based on the relationship between photoluminescence and polymer aggregation state. The structural characterizations were carried out by NMR spectroscopy and size exclusion chromatog. measurements; the photoluminescence properties of and together with anion sensing properties were followed by fluorescence spectroscopy, and the relationship between photoluminescence and aggregation behavior of both polymers in solution was investigated by dynamic light scattering measurements. In the part of experimental materials, we found many familiar compounds, such as 3,5-Dibromoaniline(cas: 626-40-4Synthetic Route of C6H5Br2N)

3,5-Dibromoaniline(cas: 626-40-4) belongs to anime. Milder oxidation, using reagents such as NaOCl, can remove four hydrogen atoms from primary amines of the type RCH2NH2 to form nitriles (R―C≡N), and oxidation with reagents such as MnO2 can remove two hydrogen atoms from secondary amines (R2CH―NHR′) to form imines (R2C=NR′). Tertiary amines can be oxidized to enamines (R2C=CHNR2) by a variety of reagents.Synthetic Route of C6H5Br2N

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary