Li, Qing’s team published research in European Journal of Medicinal Chemistry in 2019-10-15 | 337536-14-8

European Journal of Medicinal Chemistry published new progress about Antidiabetic agents. 337536-14-8 belongs to class bromides-buliding-blocks, and the molecular formula is C9H8Br2O2, Electric Literature of 337536-14-8.

Li, Qing; Meng, Liuwei; Zhou, Siru; Deng, Xiaoyan; Wang, Na; Ji, Yi; Peng, Yichun; Xing, Junhao; Yao, Gongmei published the artcile< Rapid generation of novel benzoic acid-based xanthine derivatives as highly potent, selective and long acting DPP-4 inhibitors: scaffold-hopping and prodrug study>, Electric Literature of 337536-14-8, the main research area is diabetes antidiabetes DPP 4 benzoic acid xanthine prodrug pharmacokinetics; Benzoic acid; DPP-4 inhibitor; Prodrug; Scaffold-hopping; Xanthine derivatives.

A series of novel xanthine derivatives 2a-l incorporating benzoic acid moieties were rapidly generated by using strategy of scaffold-hopping from our previously reported scaffold uracil to xanthine, a scaffold of approved drug linagliptin. After systematic structure-activity relationship (SAR) study around benzoic acid moieties, 5 novel DPP-4 inhibitors with low picomolar potency range (IC50 < 1 nM) and excellent selectivity against various DPP-4 homologues were identified, in which the best one, compound 2f(I), with the IC50 value of 0.1 nM for DPP-4, showed 22-fold improvement in inhibitory activity compared to lead compound uracil 1, its activity was 45-fold more potent than alogliptin. 2E, I, 2i(II) and 2k were selected for pharmacokinetic evaluation, and I and II showed the better pharmacokinetic profiles after iv administration, but poor oral bioavailability. To improve the oral pharmacokinetic profile, prodrug design approach was performed around I and II. Esters of I and II were synthesized and evaluated for stability, toxicity and pharmacokinetics. Compound 3e(III), the Me ester of compound I, was identified to demonstrate good stability, low toxicity and improved oral bioavailability, with 3-fold higher blood concentration compared to I in rats. The following in vivo evaluations revealed III provided a sustained pharmacodynamics effect for 48h, and robustly improved glucose tolerance in normal ICR and db/db mice in dose-dependent manner. Chronic treatments investigations demonstrated that III achieved more beneficial effects on fasting blood glucose levels and glucose tolerance than alogliptin in type 2 diabetic db/db mice. The overall results have shown that compound III has the potential to efficacious, safety and long-acting treatment for T2DM. European Journal of Medicinal Chemistry published new progress about Antidiabetic agents. 337536-14-8 belongs to class bromides-buliding-blocks, and the molecular formula is C9H8Br2O2, Electric Literature of 337536-14-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary