Amiri Rudbari, Hadi team published research on Bioorganic Chemistry in 2022 | 90-59-5

Safety of 3,5-Dibromo-2-hydroxybenzaldehyde, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Safety of 3,5-Dibromo-2-hydroxybenzaldehyde.

Amiri Rudbari, Hadi;Saadati, Arezoo;Aryaeifar, Mahnaz;Blacque, Olivier;Cuevas-Vicario, Jose V.;Cabral, Rui;Raposo, Luis R.;Fernandes, Alexandra R. research published 《 Platinum(II) and Copper(II) complexes of asymmetric halogen-substituted [NN′O] ligands: Synthesis, characterization, structural investigations and antiproliferative activity》, the research content is summarized as follows. In order to better understand the effect of structure, halogen substitution, metal ions and ligand flexibility on antiproliferative activity, eight Cu(II) complexes and eight Pt(II) complexes were obtained of 2,4-X1,X2-6-((pyridine-2-ylmethylamino)methyl)phenol and 2,4-X1,X2-6-((pyridine-2-ylmethylamino)ethyl)phenol (where X is Cl, Br, or I) ligands. The compounds were characterized with various techniques, such as FT-IR, NMR, elemental anal. and single-crystal X-ray diffraction (SCXRD). The X-ray structures showed that ligand acts as a bidentate and tridentate donor in Cu(II) and Pt(II) complexes, resp. This difference in structures is due to the use or non-use of base in the preparation of complexes. Also, complexation of Cl2-H2L1 with CuCl2·2H2O gives two different types of structures: polymer (Cl2-H2L1-Cupolymer) and dimer (Cl2-H2L1-Cudimer), according to the crystal color. In addition, 1H NMR spectrum for platinum complexes display two set of signals that can be attributed to the presence of two isomers in solution All complexes induced moderate to high reduction in A2780 and HCT116 cancer cell viability. However, only complexes bearing iodo- substituted in ligands exhibited significantly low cytotoxicity in normal fibroblasts when compared with cancer cell lines. The antiproliferative effect exhibited by I2-H2L2-Cu complex in A2780 cell line was due to induction of cell death mechanisms, namely by apoptosis and autophagy. I2-H2L2-Cu complex does not cause DNA cleavage but a slight delay in cell cycle was observed for the first 24 h of exposition. High cytotoxicity was related with the induction of intracellular ROS. This increase in intracellular ROS was not accompanied by destabilization of the mitochondrial membrane which is an indication that ROS are being triggered externally by I2-H2L2-Cu complex and in agreement with an extrinsic apoptosis activation. I2-H2L2-Cu complex has a pro-angiogenic effect, increasing the vascularization of the CAM in chicken embryos. This is also a very important characteristic in cancer treatment since the increased vascularization in tumors might facilitate the delivery of therapeutic drugs. Taken together, these results support the potential therapeutic of the I2-H2L2-Cu complex.

Safety of 3,5-Dibromo-2-hydroxybenzaldehyde, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary