Share a compound : 142808-15-9

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 142808-15-9, name is 4-Bromo-2-fluorobenzotrifluoride, A new synthetic method of this compound is introduced below., Recommanded Product: 142808-15-9

A) ethyl 2-((diphenylmethylene)amino)-2-(3-fluoro-4-(trifluoromethyl)phenyl)acetate A mixture of ethyl 2-((diphenylmethylene)amino)acetate (2.94 g), 4-bromo-2-fluoro-1-(trifluoromethyl)benzene (2.43 g) and tripotassium phosphate (6.37 g) in toluene (30 mL) was argon-substituted, and bis(tri-tert-butylphosphine)palladium (0) (0.256 g) was added at room temperature. The reaction mixture was stirred at 80 C. for 21 hr, bis(tri-tert-butylphosphine)palladium (0) (0.256 g) was added, and the mixture was stirred at 100 C. for 16 hr. To the reaction mixture were added water and ethyl acetate, and the insoluble material was filtered off. The organic layer of the filtrate was washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate) to give the title compound (3.02 g). MS (API+): [M+H]+430.1.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; TAKEDA PHARMACEUTICAL COMPANY LIMITED; Kawasaki, Masanori; Mikami, Satoshi; Nakamura, Shinji; Negoro, Nobuyuki; Ikeda, Shuhei; Nomura, Izumi; Ashizawa, Tomoko; Imaeda, Toshihiro; Seto, Masaki; Sasaki, Shigekazu; Marui, Shogo; Taniguchi, Takahiko; (130 pag.)US2016/159808; (2016); A1;,
Bromide – Wikipedia,
bromide – Wiktionary